Transformer winding deformation fault identification method

A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIAO YUNTENG, ZHANG TAO, ZHANG LEI, YANG SHIHAO, WU LIN, XU YANCHUN, HUANG YUEHUA, LI ZHENHUA, LI ZHENXING, ZHANG WENTING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIAO YUNTENG
ZHANG TAO
ZHANG LEI
YANG SHIHAO
WU LIN
XU YANCHUN
HUANG YUEHUA
LI ZHENHUA
LI ZHENXING
ZHANG WENTING
description A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117909811A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117909811A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117909811A3</originalsourceid><addsrcrecordid>eNrjZLAOKUrMK07LL8pNLVIoz8xLycxLV0hJBQkklmTm5ymkJZbmlChkpqTmlWSmZSZDBHNTSzLyU3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhuaWBpYWhoaMxMWoAF1YwTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transformer winding deformation fault identification method</title><source>esp@cenet</source><creator>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</creator><creatorcontrib>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</creatorcontrib><description>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117909811A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117909811A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO YUNTENG</creatorcontrib><creatorcontrib>ZHANG TAO</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>YANG SHIHAO</creatorcontrib><creatorcontrib>WU LIN</creatorcontrib><creatorcontrib>XU YANCHUN</creatorcontrib><creatorcontrib>HUANG YUEHUA</creatorcontrib><creatorcontrib>LI ZHENHUA</creatorcontrib><creatorcontrib>LI ZHENXING</creatorcontrib><creatorcontrib>ZHANG WENTING</creatorcontrib><title>Transformer winding deformation fault identification method</title><description>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOKUrMK07LL8pNLVIoz8xLycxLV0hJBQkklmTm5ymkJZbmlChkpqTmlWSmZSZDBHNTSzLyU3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhuaWBpYWhoaMxMWoAF1YwTg</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>XIAO YUNTENG</creator><creator>ZHANG TAO</creator><creator>ZHANG LEI</creator><creator>YANG SHIHAO</creator><creator>WU LIN</creator><creator>XU YANCHUN</creator><creator>HUANG YUEHUA</creator><creator>LI ZHENHUA</creator><creator>LI ZHENXING</creator><creator>ZHANG WENTING</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Transformer winding deformation fault identification method</title><author>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117909811A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO YUNTENG</creatorcontrib><creatorcontrib>ZHANG TAO</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>YANG SHIHAO</creatorcontrib><creatorcontrib>WU LIN</creatorcontrib><creatorcontrib>XU YANCHUN</creatorcontrib><creatorcontrib>HUANG YUEHUA</creatorcontrib><creatorcontrib>LI ZHENHUA</creatorcontrib><creatorcontrib>LI ZHENXING</creatorcontrib><creatorcontrib>ZHANG WENTING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO YUNTENG</au><au>ZHANG TAO</au><au>ZHANG LEI</au><au>YANG SHIHAO</au><au>WU LIN</au><au>XU YANCHUN</au><au>HUANG YUEHUA</au><au>LI ZHENHUA</au><au>LI ZHENXING</au><au>ZHANG WENTING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transformer winding deformation fault identification method</title><date>2024-04-19</date><risdate>2024</risdate><abstract>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117909811A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Transformer winding deformation fault identification method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20YUNTENG&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117909811A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true