Transformer winding deformation fault identification method
A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIAO YUNTENG ZHANG TAO ZHANG LEI YANG SHIHAO WU LIN XU YANCHUN HUANG YUEHUA LI ZHENHUA LI ZHENXING ZHANG WENTING |
description | A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117909811A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117909811A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117909811A3</originalsourceid><addsrcrecordid>eNrjZLAOKUrMK07LL8pNLVIoz8xLycxLV0hJBQkklmTm5ymkJZbmlChkpqTmlWSmZSZDBHNTSzLyU3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhuaWBpYWhoaMxMWoAF1YwTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transformer winding deformation fault identification method</title><source>esp@cenet</source><creator>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</creator><creatorcontrib>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</creatorcontrib><description>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909811A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909811A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO YUNTENG</creatorcontrib><creatorcontrib>ZHANG TAO</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>YANG SHIHAO</creatorcontrib><creatorcontrib>WU LIN</creatorcontrib><creatorcontrib>XU YANCHUN</creatorcontrib><creatorcontrib>HUANG YUEHUA</creatorcontrib><creatorcontrib>LI ZHENHUA</creatorcontrib><creatorcontrib>LI ZHENXING</creatorcontrib><creatorcontrib>ZHANG WENTING</creatorcontrib><title>Transformer winding deformation fault identification method</title><description>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOKUrMK07LL8pNLVIoz8xLycxLV0hJBQkklmTm5ymkJZbmlChkpqTmlWSmZSZDBHNTSzLyU3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhuaWBpYWhoaMxMWoAF1YwTg</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>XIAO YUNTENG</creator><creator>ZHANG TAO</creator><creator>ZHANG LEI</creator><creator>YANG SHIHAO</creator><creator>WU LIN</creator><creator>XU YANCHUN</creator><creator>HUANG YUEHUA</creator><creator>LI ZHENHUA</creator><creator>LI ZHENXING</creator><creator>ZHANG WENTING</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Transformer winding deformation fault identification method</title><author>XIAO YUNTENG ; ZHANG TAO ; ZHANG LEI ; YANG SHIHAO ; WU LIN ; XU YANCHUN ; HUANG YUEHUA ; LI ZHENHUA ; LI ZHENXING ; ZHANG WENTING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117909811A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO YUNTENG</creatorcontrib><creatorcontrib>ZHANG TAO</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>YANG SHIHAO</creatorcontrib><creatorcontrib>WU LIN</creatorcontrib><creatorcontrib>XU YANCHUN</creatorcontrib><creatorcontrib>HUANG YUEHUA</creatorcontrib><creatorcontrib>LI ZHENHUA</creatorcontrib><creatorcontrib>LI ZHENXING</creatorcontrib><creatorcontrib>ZHANG WENTING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO YUNTENG</au><au>ZHANG TAO</au><au>ZHANG LEI</au><au>YANG SHIHAO</au><au>WU LIN</au><au>XU YANCHUN</au><au>HUANG YUEHUA</au><au>LI ZHENHUA</au><au>LI ZHENXING</au><au>ZHANG WENTING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transformer winding deformation fault identification method</title><date>2024-04-19</date><risdate>2024</risdate><abstract>A transformer winding deformation fault identification method comprises the following steps that a transformer winding lumped parameter model is established, and normal winding amplitude-frequency data and phase-frequency data are obtained; adjusting model circuit parameters to obtain amplitude and phase data of the winding in different fault states; obtaining new characteristic indexes from the obtained amplitudes and phases through a moving window calculation method, and establishing a new characteristic sequence; obtaining a cosine value of a polar coordinate through an arc cosine of a new feature sequence normalization result, performing conversion to obtain a Gramb angle difference field numerical value, and generating a corresponding thermodynamic diagram according to the Gramb angle difference field numerical value to obtain a required image data set; and establishing a convolutional neural network (CNN) model, training the image data set, finally carrying out fault identification and classification, a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117909811A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Transformer winding deformation fault identification method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20YUNTENG&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117909811A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |