Slope displacement time sequence prediction method and device and storage medium
The invention discloses a slope displacement time sequence prediction method and device and a storage medium, and the method comprises the steps: collecting corresponding multi-source data through a plurality of common geological data collection devices, including a soil moisture meter, an inclinome...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YIN CHENFENG WU GUOQING ZHANG NAN |
description | The invention discloses a slope displacement time sequence prediction method and device and a storage medium, and the method comprises the steps: collecting corresponding multi-source data through a plurality of common geological data collection devices, including a soil moisture meter, an inclinometer rope, a stay wire displacement meter and a GNSS, and collecting corresponding soil moisture content, deep displacement, crack displacement and slope displacement data; slope data is slope displacement required to be predicted, and soil moisture content, deep displacement and crack displacement are used as characteristic data for assisting in predicting the slope. Slope displacement data are divided into overall trend data and fluctuation data by adopting a decomposition method, the trend data are independently input into a GRU network model for prediction, the fluctuation data and feature data are input into a Seq2Seq + Attention network model together for training, and the predicted trend data and fluctuation |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117909681A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117909681A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117909681A3</originalsourceid><addsrcrecordid>eNqNjUsKAjEQBbNxIeod2gMIBkGdpQyKKxF0P4TkOTbk56TH8xvBA7iqB_Wgpup68ymDHJfsjUVAFBIOoILXiGhBeYBjK5wiBcgzOTLRkcObq_zOImkwPap1PIa5mjyML1j8OFPL0_HenlfIqUPJNRIhXXvRetesm-1eHzb_fD644TeN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Slope displacement time sequence prediction method and device and storage medium</title><source>esp@cenet</source><creator>YIN CHENFENG ; WU GUOQING ; ZHANG NAN</creator><creatorcontrib>YIN CHENFENG ; WU GUOQING ; ZHANG NAN</creatorcontrib><description>The invention discloses a slope displacement time sequence prediction method and device and a storage medium, and the method comprises the steps: collecting corresponding multi-source data through a plurality of common geological data collection devices, including a soil moisture meter, an inclinometer rope, a stay wire displacement meter and a GNSS, and collecting corresponding soil moisture content, deep displacement, crack displacement and slope displacement data; slope data is slope displacement required to be predicted, and soil moisture content, deep displacement and crack displacement are used as characteristic data for assisting in predicting the slope. Slope displacement data are divided into overall trend data and fluctuation data by adopting a decomposition method, the trend data are independently input into a GRU network model for prediction, the fluctuation data and feature data are input into a Seq2Seq + Attention network model together for training, and the predicted trend data and fluctuation</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909681A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909681A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIN CHENFENG</creatorcontrib><creatorcontrib>WU GUOQING</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><title>Slope displacement time sequence prediction method and device and storage medium</title><description>The invention discloses a slope displacement time sequence prediction method and device and a storage medium, and the method comprises the steps: collecting corresponding multi-source data through a plurality of common geological data collection devices, including a soil moisture meter, an inclinometer rope, a stay wire displacement meter and a GNSS, and collecting corresponding soil moisture content, deep displacement, crack displacement and slope displacement data; slope data is slope displacement required to be predicted, and soil moisture content, deep displacement and crack displacement are used as characteristic data for assisting in predicting the slope. Slope displacement data are divided into overall trend data and fluctuation data by adopting a decomposition method, the trend data are independently input into a GRU network model for prediction, the fluctuation data and feature data are input into a Seq2Seq + Attention network model together for training, and the predicted trend data and fluctuation</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUsKAjEQBbNxIeod2gMIBkGdpQyKKxF0P4TkOTbk56TH8xvBA7iqB_Wgpup68ymDHJfsjUVAFBIOoILXiGhBeYBjK5wiBcgzOTLRkcObq_zOImkwPap1PIa5mjyML1j8OFPL0_HenlfIqUPJNRIhXXvRetesm-1eHzb_fD644TeN</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>YIN CHENFENG</creator><creator>WU GUOQING</creator><creator>ZHANG NAN</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Slope displacement time sequence prediction method and device and storage medium</title><author>YIN CHENFENG ; WU GUOQING ; ZHANG NAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117909681A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIN CHENFENG</creatorcontrib><creatorcontrib>WU GUOQING</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIN CHENFENG</au><au>WU GUOQING</au><au>ZHANG NAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Slope displacement time sequence prediction method and device and storage medium</title><date>2024-04-19</date><risdate>2024</risdate><abstract>The invention discloses a slope displacement time sequence prediction method and device and a storage medium, and the method comprises the steps: collecting corresponding multi-source data through a plurality of common geological data collection devices, including a soil moisture meter, an inclinometer rope, a stay wire displacement meter and a GNSS, and collecting corresponding soil moisture content, deep displacement, crack displacement and slope displacement data; slope data is slope displacement required to be predicted, and soil moisture content, deep displacement and crack displacement are used as characteristic data for assisting in predicting the slope. Slope displacement data are divided into overall trend data and fluctuation data by adopting a decomposition method, the trend data are independently input into a GRU network model for prediction, the fluctuation data and feature data are input into a Seq2Seq + Attention network model together for training, and the predicted trend data and fluctuation</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117909681A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Slope displacement time sequence prediction method and device and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIN%20CHENFENG&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117909681A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |