Remote sensing image semantic segmentation method based on class center prototype

The invention discloses a remote sensing image semantic segmentation method based on a class center prototype, and the method comprises the steps: inputting a remote sensing image to be subjected to semantic segmentation into a trained semantic segmentation model, obtaining pixel features through a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIAN RONGRONG, ZHANG WEI, GUO XIAOXIAO, MA XIAOWEN, WU ZHENKAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIAN RONGRONG
ZHANG WEI
GUO XIAOXIAO
MA XIAOWEN
WU ZHENKAI
description The invention discloses a remote sensing image semantic segmentation method based on a class center prototype, and the method comprises the steps: inputting a remote sensing image to be subjected to semantic segmentation into a trained semantic segmentation model, obtaining pixel features through a feature extractor composed of an encoder and a decoder, generating a plurality of final local class prototypes during the training of a classifier module, and carrying out the semantic segmentation of the remote sensing image. And calculating the similarity between the pixel features and the final local class prototypes by using a similarity conversion function, and taking the semantic class to which the final local class prototype with the maximum similarity belongs as a semantic segmentation result of the remote sensing image. According to the method, the semantic segmentation model is constrained by introducing the orthogonal constraint, the first constraint and the second constraint, so that the generation dire
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117876688A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117876688A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117876688A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQhK-xEPUd1gewCEJyrQTFSlDsw3oZz4PcD9ltfHtP8AGsZj6-maW53hCzggRJQvIUIvsvRU4aXC0-IilryIki9JVHerBgpMpuYhFy1WOmMmfN-i5Ym8WTJ8HmlyuzPR3v_XmHkgdI4XqADv2laTrbta21h_0_mw8T8ThS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Remote sensing image semantic segmentation method based on class center prototype</title><source>esp@cenet</source><creator>LIAN RONGRONG ; ZHANG WEI ; GUO XIAOXIAO ; MA XIAOWEN ; WU ZHENKAI</creator><creatorcontrib>LIAN RONGRONG ; ZHANG WEI ; GUO XIAOXIAO ; MA XIAOWEN ; WU ZHENKAI</creatorcontrib><description>The invention discloses a remote sensing image semantic segmentation method based on a class center prototype, and the method comprises the steps: inputting a remote sensing image to be subjected to semantic segmentation into a trained semantic segmentation model, obtaining pixel features through a feature extractor composed of an encoder and a decoder, generating a plurality of final local class prototypes during the training of a classifier module, and carrying out the semantic segmentation of the remote sensing image. And calculating the similarity between the pixel features and the final local class prototypes by using a similarity conversion function, and taking the semantic class to which the final local class prototype with the maximum similarity belongs as a semantic segmentation result of the remote sensing image. According to the method, the semantic segmentation model is constrained by introducing the orthogonal constraint, the first constraint and the second constraint, so that the generation dire</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240412&amp;DB=EPODOC&amp;CC=CN&amp;NR=117876688A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240412&amp;DB=EPODOC&amp;CC=CN&amp;NR=117876688A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIAN RONGRONG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>GUO XIAOXIAO</creatorcontrib><creatorcontrib>MA XIAOWEN</creatorcontrib><creatorcontrib>WU ZHENKAI</creatorcontrib><title>Remote sensing image semantic segmentation method based on class center prototype</title><description>The invention discloses a remote sensing image semantic segmentation method based on a class center prototype, and the method comprises the steps: inputting a remote sensing image to be subjected to semantic segmentation into a trained semantic segmentation model, obtaining pixel features through a feature extractor composed of an encoder and a decoder, generating a plurality of final local class prototypes during the training of a classifier module, and carrying out the semantic segmentation of the remote sensing image. And calculating the similarity between the pixel features and the final local class prototypes by using a similarity conversion function, and taking the semantic class to which the final local class prototype with the maximum similarity belongs as a semantic segmentation result of the remote sensing image. According to the method, the semantic segmentation model is constrained by introducing the orthogonal constraint, the first constraint and the second constraint, so that the generation dire</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQhK-xEPUd1gewCEJyrQTFSlDsw3oZz4PcD9ltfHtP8AGsZj6-maW53hCzggRJQvIUIvsvRU4aXC0-IilryIki9JVHerBgpMpuYhFy1WOmMmfN-i5Ym8WTJ8HmlyuzPR3v_XmHkgdI4XqADv2laTrbta21h_0_mw8T8ThS</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>LIAN RONGRONG</creator><creator>ZHANG WEI</creator><creator>GUO XIAOXIAO</creator><creator>MA XIAOWEN</creator><creator>WU ZHENKAI</creator><scope>EVB</scope></search><sort><creationdate>20240412</creationdate><title>Remote sensing image semantic segmentation method based on class center prototype</title><author>LIAN RONGRONG ; ZHANG WEI ; GUO XIAOXIAO ; MA XIAOWEN ; WU ZHENKAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117876688A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIAN RONGRONG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>GUO XIAOXIAO</creatorcontrib><creatorcontrib>MA XIAOWEN</creatorcontrib><creatorcontrib>WU ZHENKAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIAN RONGRONG</au><au>ZHANG WEI</au><au>GUO XIAOXIAO</au><au>MA XIAOWEN</au><au>WU ZHENKAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Remote sensing image semantic segmentation method based on class center prototype</title><date>2024-04-12</date><risdate>2024</risdate><abstract>The invention discloses a remote sensing image semantic segmentation method based on a class center prototype, and the method comprises the steps: inputting a remote sensing image to be subjected to semantic segmentation into a trained semantic segmentation model, obtaining pixel features through a feature extractor composed of an encoder and a decoder, generating a plurality of final local class prototypes during the training of a classifier module, and carrying out the semantic segmentation of the remote sensing image. And calculating the similarity between the pixel features and the final local class prototypes by using a similarity conversion function, and taking the semantic class to which the final local class prototype with the maximum similarity belongs as a semantic segmentation result of the remote sensing image. According to the method, the semantic segmentation model is constrained by introducing the orthogonal constraint, the first constraint and the second constraint, so that the generation dire</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117876688A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title Remote sensing image semantic segmentation method based on class center prototype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIAN%20RONGRONG&rft.date=2024-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117876688A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true