Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network
The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithm...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HAN XU LI ZIRUI TAN DANPING LI BOFAN JI WENBIN HUANG QIANGFEI YANG HUA |
description | The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117872756A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117872756A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117872756A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgN0UUXbrRbFlRZ0bRnTSRNsk5JMFDy9WXgAV48P7_Gn4l5F_6IWQvQKJcGAUhtrbAcyMpOHoFExoO16AjeyGcwH2TgLA7F2LTwwpDzt-nrJ9jVYih77BH47_5yLicI-0OLHmVgeD7fqlNHoGgpjukxmU53zvCiLVbHZ7tb_OF8nuDxX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><source>esp@cenet</source><creator>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</creator><creatorcontrib>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</creatorcontrib><description>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&CC=CN&NR=117872756A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&CC=CN&NR=117872756A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAN XU</creatorcontrib><creatorcontrib>LI ZIRUI</creatorcontrib><creatorcontrib>TAN DANPING</creatorcontrib><creatorcontrib>LI BOFAN</creatorcontrib><creatorcontrib>JI WENBIN</creatorcontrib><creatorcontrib>HUANG QIANGFEI</creatorcontrib><creatorcontrib>YANG HUA</creatorcontrib><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><description>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgN0UUXbrRbFlRZ0bRnTSRNsk5JMFDy9WXgAV48P7_Gn4l5F_6IWQvQKJcGAUhtrbAcyMpOHoFExoO16AjeyGcwH2TgLA7F2LTwwpDzt-nrJ9jVYih77BH47_5yLicI-0OLHmVgeD7fqlNHoGgpjukxmU53zvCiLVbHZ7tb_OF8nuDxX</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>HAN XU</creator><creator>LI ZIRUI</creator><creator>TAN DANPING</creator><creator>LI BOFAN</creator><creator>JI WENBIN</creator><creator>HUANG QIANGFEI</creator><creator>YANG HUA</creator><scope>EVB</scope></search><sort><creationdate>20240412</creationdate><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><author>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117872756A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>HAN XU</creatorcontrib><creatorcontrib>LI ZIRUI</creatorcontrib><creatorcontrib>TAN DANPING</creatorcontrib><creatorcontrib>LI BOFAN</creatorcontrib><creatorcontrib>JI WENBIN</creatorcontrib><creatorcontrib>HUANG QIANGFEI</creatorcontrib><creatorcontrib>YANG HUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAN XU</au><au>LI ZIRUI</au><au>TAN DANPING</au><au>LI BOFAN</au><au>JI WENBIN</au><au>HUANG QIANGFEI</au><au>YANG HUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><date>2024-04-12</date><risdate>2024</risdate><abstract>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117872756A |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAN%20XU&rft.date=2024-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117872756A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |