Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network

The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAN XU, LI ZIRUI, TAN DANPING, LI BOFAN, JI WENBIN, HUANG QIANGFEI, YANG HUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAN XU
LI ZIRUI
TAN DANPING
LI BOFAN
JI WENBIN
HUANG QIANGFEI
YANG HUA
description The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117872756A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117872756A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117872756A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgN0UUXbrRbFlRZ0bRnTSRNsk5JMFDy9WXgAV48P7_Gn4l5F_6IWQvQKJcGAUhtrbAcyMpOHoFExoO16AjeyGcwH2TgLA7F2LTwwpDzt-nrJ9jVYih77BH47_5yLicI-0OLHmVgeD7fqlNHoGgpjukxmU53zvCiLVbHZ7tb_OF8nuDxX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><source>esp@cenet</source><creator>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</creator><creatorcontrib>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</creatorcontrib><description>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240412&amp;DB=EPODOC&amp;CC=CN&amp;NR=117872756A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240412&amp;DB=EPODOC&amp;CC=CN&amp;NR=117872756A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAN XU</creatorcontrib><creatorcontrib>LI ZIRUI</creatorcontrib><creatorcontrib>TAN DANPING</creatorcontrib><creatorcontrib>LI BOFAN</creatorcontrib><creatorcontrib>JI WENBIN</creatorcontrib><creatorcontrib>HUANG QIANGFEI</creatorcontrib><creatorcontrib>YANG HUA</creatorcontrib><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><description>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgN0UUXbrRbFlRZ0bRnTSRNsk5JMFDy9WXgAV48P7_Gn4l5F_6IWQvQKJcGAUhtrbAcyMpOHoFExoO16AjeyGcwH2TgLA7F2LTwwpDzt-nrJ9jVYih77BH47_5yLicI-0OLHmVgeD7fqlNHoGgpjukxmU53zvCiLVbHZ7tb_OF8nuDxX</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>HAN XU</creator><creator>LI ZIRUI</creator><creator>TAN DANPING</creator><creator>LI BOFAN</creator><creator>JI WENBIN</creator><creator>HUANG QIANGFEI</creator><creator>YANG HUA</creator><scope>EVB</scope></search><sort><creationdate>20240412</creationdate><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><author>HAN XU ; LI ZIRUI ; TAN DANPING ; LI BOFAN ; JI WENBIN ; HUANG QIANGFEI ; YANG HUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117872756A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>HAN XU</creatorcontrib><creatorcontrib>LI ZIRUI</creatorcontrib><creatorcontrib>TAN DANPING</creatorcontrib><creatorcontrib>LI BOFAN</creatorcontrib><creatorcontrib>JI WENBIN</creatorcontrib><creatorcontrib>HUANG QIANGFEI</creatorcontrib><creatorcontrib>YANG HUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAN XU</au><au>LI ZIRUI</au><au>TAN DANPING</au><au>LI BOFAN</au><au>JI WENBIN</au><au>HUANG QIANGFEI</au><au>YANG HUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network</title><date>2024-04-12</date><risdate>2024</risdate><abstract>The invention relates to the technical field of complex surface machining parameter optimization and artificial intelligence, in particular to a curved surface machining cutter shaft angle optimization method based on a PSO-BP neural network, and the method comprises the steps: collecting the arithmetic mean surface roughness of a workpiece after machining according to different cutter shaft angle parameters in a preset cutter shaft angle parameter range, establishing a cutter shaft angle-roughness corresponding database; establishing a cutter shaft angle-roughness prediction model based on a BP neural network; the initial network weight and the initial network threshold are optimized and substituted into the cutter shaft angle-roughness prediction model to obtain a final cutter shaft angle-roughness prediction model; and selecting an optimal cutter shaft machining angle according to the final cutter shaft angle-roughness prediction model. The method can effectively solve the problem that most cutter shaft an</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117872756A
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Curved surface machining cutter shaft angle optimization method based on PSO-BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAN%20XU&rft.date=2024-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117872756A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true