Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method

The invention relates to a near-infrared model establishment method and a characteristic wavelength extraction method for predicting the oil content of cyperus esculentus, and belongs to the field of near-infrared spectrum analysis. According to the method, the MLP neural network is combined with PL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YING, MIMA DUNZHU, SHI XUESHUANG, ZHANG BIN, LI CHANGJIE, DAWA ZHUOMA, ZHAO QIAN, ZHAO JIANGTAO, DANG XIQIANG, CHILIETZOOM, LAM, WEI HAIFENG, GAO WENWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YING
MIMA DUNZHU
SHI XUESHUANG
ZHANG BIN
LI CHANGJIE
DAWA ZHUOMA
ZHAO QIAN
ZHAO JIANGTAO
DANG XIQIANG
CHILIETZOOM
LAM
WEI HAIFENG
GAO WENWEI
description The invention relates to a near-infrared model establishment method and a characteristic wavelength extraction method for predicting the oil content of cyperus esculentus, and belongs to the field of near-infrared spectrum analysis. According to the method, the MLP neural network is combined with PLS cross validation, the characteristic wavelength related to the oil content in the near infrared spectrum of the cyperus esculentus is extracted, the screened characteristic near infrared information related to the oil content is used for fitting with the oil content, the accuracy of the obtained near infrared model is better, the predictive capacity is greatly improved, and meanwhile the number of the characteristic wavelength is smaller. By utilizing the established near-infrared analysis model, the oil content of the cyperus esculentus can be predicted only by measuring the near-infrared spectrum information of the cyperus esculentus, and rapid, nondestructive and accurate measurement is realized. 本发明涉及一种预测油莎豆含
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117854617A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117854617A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117854617A3</originalsourceid><addsrcrecordid>eNqNjj0OwjAMRrswIOAO5gAdKn7KiioQUyf2yqQujUiTynYp3Tg6QeIATP6evmfL8-Rd0sDowJOOgR_pDYVqMFNPPAiQmMGR1xiDdWCC10hRRk6tbxg5yujRTWIFulCTixj3W2Q0SmxFrYERnxTP3LUFeum3scFDR9qGepnMGnRCq99cJOvz6VpcUupDRdKjofhbVZRZlh92232WHzf_OB8RqkrP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method</title><source>esp@cenet</source><creator>WANG YING ; MIMA DUNZHU ; SHI XUESHUANG ; ZHANG BIN ; LI CHANGJIE ; DAWA ZHUOMA ; ZHAO QIAN ; ZHAO JIANGTAO ; DANG XIQIANG ; CHILIETZOOM ; LAM ; WEI HAIFENG ; GAO WENWEI</creator><creatorcontrib>WANG YING ; MIMA DUNZHU ; SHI XUESHUANG ; ZHANG BIN ; LI CHANGJIE ; DAWA ZHUOMA ; ZHAO QIAN ; ZHAO JIANGTAO ; DANG XIQIANG ; CHILIETZOOM ; LAM ; WEI HAIFENG ; GAO WENWEI</creatorcontrib><description>The invention relates to a near-infrared model establishment method and a characteristic wavelength extraction method for predicting the oil content of cyperus esculentus, and belongs to the field of near-infrared spectrum analysis. According to the method, the MLP neural network is combined with PLS cross validation, the characteristic wavelength related to the oil content in the near infrared spectrum of the cyperus esculentus is extracted, the screened characteristic near infrared information related to the oil content is used for fitting with the oil content, the accuracy of the obtained near infrared model is better, the predictive capacity is greatly improved, and meanwhile the number of the characteristic wavelength is smaller. By utilizing the established near-infrared analysis model, the oil content of the cyperus esculentus can be predicted only by measuring the near-infrared spectrum information of the cyperus esculentus, and rapid, nondestructive and accurate measurement is realized. 本发明涉及一种预测油莎豆含</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117854617A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117854617A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YING</creatorcontrib><creatorcontrib>MIMA DUNZHU</creatorcontrib><creatorcontrib>SHI XUESHUANG</creatorcontrib><creatorcontrib>ZHANG BIN</creatorcontrib><creatorcontrib>LI CHANGJIE</creatorcontrib><creatorcontrib>DAWA ZHUOMA</creatorcontrib><creatorcontrib>ZHAO QIAN</creatorcontrib><creatorcontrib>ZHAO JIANGTAO</creatorcontrib><creatorcontrib>DANG XIQIANG</creatorcontrib><creatorcontrib>CHILIETZOOM</creatorcontrib><creatorcontrib>LAM</creatorcontrib><creatorcontrib>WEI HAIFENG</creatorcontrib><creatorcontrib>GAO WENWEI</creatorcontrib><title>Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method</title><description>The invention relates to a near-infrared model establishment method and a characteristic wavelength extraction method for predicting the oil content of cyperus esculentus, and belongs to the field of near-infrared spectrum analysis. According to the method, the MLP neural network is combined with PLS cross validation, the characteristic wavelength related to the oil content in the near infrared spectrum of the cyperus esculentus is extracted, the screened characteristic near infrared information related to the oil content is used for fitting with the oil content, the accuracy of the obtained near infrared model is better, the predictive capacity is greatly improved, and meanwhile the number of the characteristic wavelength is smaller. By utilizing the established near-infrared analysis model, the oil content of the cyperus esculentus can be predicted only by measuring the near-infrared spectrum information of the cyperus esculentus, and rapid, nondestructive and accurate measurement is realized. 本发明涉及一种预测油莎豆含</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjj0OwjAMRrswIOAO5gAdKn7KiioQUyf2yqQujUiTynYp3Tg6QeIATP6evmfL8-Rd0sDowJOOgR_pDYVqMFNPPAiQmMGR1xiDdWCC10hRRk6tbxg5yujRTWIFulCTixj3W2Q0SmxFrYERnxTP3LUFeum3scFDR9qGepnMGnRCq99cJOvz6VpcUupDRdKjofhbVZRZlh92232WHzf_OB8RqkrP</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>WANG YING</creator><creator>MIMA DUNZHU</creator><creator>SHI XUESHUANG</creator><creator>ZHANG BIN</creator><creator>LI CHANGJIE</creator><creator>DAWA ZHUOMA</creator><creator>ZHAO QIAN</creator><creator>ZHAO JIANGTAO</creator><creator>DANG XIQIANG</creator><creator>CHILIETZOOM</creator><creator>LAM</creator><creator>WEI HAIFENG</creator><creator>GAO WENWEI</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method</title><author>WANG YING ; MIMA DUNZHU ; SHI XUESHUANG ; ZHANG BIN ; LI CHANGJIE ; DAWA ZHUOMA ; ZHAO QIAN ; ZHAO JIANGTAO ; DANG XIQIANG ; CHILIETZOOM ; LAM ; WEI HAIFENG ; GAO WENWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117854617A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YING</creatorcontrib><creatorcontrib>MIMA DUNZHU</creatorcontrib><creatorcontrib>SHI XUESHUANG</creatorcontrib><creatorcontrib>ZHANG BIN</creatorcontrib><creatorcontrib>LI CHANGJIE</creatorcontrib><creatorcontrib>DAWA ZHUOMA</creatorcontrib><creatorcontrib>ZHAO QIAN</creatorcontrib><creatorcontrib>ZHAO JIANGTAO</creatorcontrib><creatorcontrib>DANG XIQIANG</creatorcontrib><creatorcontrib>CHILIETZOOM</creatorcontrib><creatorcontrib>LAM</creatorcontrib><creatorcontrib>WEI HAIFENG</creatorcontrib><creatorcontrib>GAO WENWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YING</au><au>MIMA DUNZHU</au><au>SHI XUESHUANG</au><au>ZHANG BIN</au><au>LI CHANGJIE</au><au>DAWA ZHUOMA</au><au>ZHAO QIAN</au><au>ZHAO JIANGTAO</au><au>DANG XIQIANG</au><au>CHILIETZOOM</au><au>LAM</au><au>WEI HAIFENG</au><au>GAO WENWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention relates to a near-infrared model establishment method and a characteristic wavelength extraction method for predicting the oil content of cyperus esculentus, and belongs to the field of near-infrared spectrum analysis. According to the method, the MLP neural network is combined with PLS cross validation, the characteristic wavelength related to the oil content in the near infrared spectrum of the cyperus esculentus is extracted, the screened characteristic near infrared information related to the oil content is used for fitting with the oil content, the accuracy of the obtained near infrared model is better, the predictive capacity is greatly improved, and meanwhile the number of the characteristic wavelength is smaller. By utilizing the established near-infrared analysis model, the oil content of the cyperus esculentus can be predicted only by measuring the near-infrared spectrum information of the cyperus esculentus, and rapid, nondestructive and accurate measurement is realized. 本发明涉及一种预测油莎豆含</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117854617A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Neural network-based cyperus esculentus oil content near-infrared analysis model and characteristic wavelength extraction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YING&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117854617A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true