Deep learning-based equipment intelligent identification method and system

The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHEN GUOJI, LUO XU, SHU XINHAO, DONG MENGGAO, YANG YONGMIN, ZHOU JIAN, LI LEI, ZHANG SHIGANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHEN GUOJI
LUO XU
SHU XINHAO
DONG MENGGAO
YANG YONGMIN
ZHOU JIAN
LI LEI
ZHANG SHIGANG
description The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117853843A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117853843A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117853843A3</originalsourceid><addsrcrecordid>eNrjZPBySU0tUMhJTSzKy8xL101KLE5NUUgtLM0syE3NK1HIzCtJzcnJTAezU4BkZlpmcmJJZn6eQm5qSUZ-ikJiXopCcWVxSWouDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2Jd_YzNDS3MDW2MDF2NCZGDQBkQDW1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based equipment intelligent identification method and system</title><source>esp@cenet</source><creator>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</creator><creatorcontrib>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</creatorcontrib><description>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853843A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853843A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN GUOJI</creatorcontrib><creatorcontrib>LUO XU</creatorcontrib><creatorcontrib>SHU XINHAO</creatorcontrib><creatorcontrib>DONG MENGGAO</creatorcontrib><creatorcontrib>YANG YONGMIN</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>ZHANG SHIGANG</creatorcontrib><title>Deep learning-based equipment intelligent identification method and system</title><description>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBySU0tUMhJTSzKy8xL101KLE5NUUgtLM0syE3NK1HIzCtJzcnJTAezU4BkZlpmcmJJZn6eQm5qSUZ-ikJiXopCcWVxSWouDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2Jd_YzNDS3MDW2MDF2NCZGDQBkQDW1</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>SHEN GUOJI</creator><creator>LUO XU</creator><creator>SHU XINHAO</creator><creator>DONG MENGGAO</creator><creator>YANG YONGMIN</creator><creator>ZHOU JIAN</creator><creator>LI LEI</creator><creator>ZHANG SHIGANG</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Deep learning-based equipment intelligent identification method and system</title><author>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117853843A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN GUOJI</creatorcontrib><creatorcontrib>LUO XU</creatorcontrib><creatorcontrib>SHU XINHAO</creatorcontrib><creatorcontrib>DONG MENGGAO</creatorcontrib><creatorcontrib>YANG YONGMIN</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>ZHANG SHIGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN GUOJI</au><au>LUO XU</au><au>SHU XINHAO</au><au>DONG MENGGAO</au><au>YANG YONGMIN</au><au>ZHOU JIAN</au><au>LI LEI</au><au>ZHANG SHIGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based equipment intelligent identification method and system</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117853843A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title Deep learning-based equipment intelligent identification method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20GUOJI&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117853843A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true