Deep learning-based equipment intelligent identification method and system
The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHEN GUOJI LUO XU SHU XINHAO DONG MENGGAO YANG YONGMIN ZHOU JIAN LI LEI ZHANG SHIGANG |
description | The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117853843A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117853843A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117853843A3</originalsourceid><addsrcrecordid>eNrjZPBySU0tUMhJTSzKy8xL101KLE5NUUgtLM0syE3NK1HIzCtJzcnJTAezU4BkZlpmcmJJZn6eQm5qSUZ-ikJiXopCcWVxSWouDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2Jd_YzNDS3MDW2MDF2NCZGDQBkQDW1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based equipment intelligent identification method and system</title><source>esp@cenet</source><creator>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</creator><creatorcontrib>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</creatorcontrib><description>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240409&DB=EPODOC&CC=CN&NR=117853843A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240409&DB=EPODOC&CC=CN&NR=117853843A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN GUOJI</creatorcontrib><creatorcontrib>LUO XU</creatorcontrib><creatorcontrib>SHU XINHAO</creatorcontrib><creatorcontrib>DONG MENGGAO</creatorcontrib><creatorcontrib>YANG YONGMIN</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>ZHANG SHIGANG</creatorcontrib><title>Deep learning-based equipment intelligent identification method and system</title><description>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBySU0tUMhJTSzKy8xL101KLE5NUUgtLM0syE3NK1HIzCtJzcnJTAezU4BkZlpmcmJJZn6eQm5qSUZ-ikJiXopCcWVxSWouDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2Jd_YzNDS3MDW2MDF2NCZGDQBkQDW1</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>SHEN GUOJI</creator><creator>LUO XU</creator><creator>SHU XINHAO</creator><creator>DONG MENGGAO</creator><creator>YANG YONGMIN</creator><creator>ZHOU JIAN</creator><creator>LI LEI</creator><creator>ZHANG SHIGANG</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Deep learning-based equipment intelligent identification method and system</title><author>SHEN GUOJI ; LUO XU ; SHU XINHAO ; DONG MENGGAO ; YANG YONGMIN ; ZHOU JIAN ; LI LEI ; ZHANG SHIGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117853843A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN GUOJI</creatorcontrib><creatorcontrib>LUO XU</creatorcontrib><creatorcontrib>SHU XINHAO</creatorcontrib><creatorcontrib>DONG MENGGAO</creatorcontrib><creatorcontrib>YANG YONGMIN</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>ZHANG SHIGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN GUOJI</au><au>LUO XU</au><au>SHU XINHAO</au><au>DONG MENGGAO</au><au>YANG YONGMIN</au><au>ZHOU JIAN</au><au>LI LEI</au><au>ZHANG SHIGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based equipment intelligent identification method and system</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention discloses an equipment intelligent identification method and system based on deep learning, and the method comprises the steps: firstly constructing an equipment data set, dividing the equipment data set into a training set, a verification set and a test set, then building an equipment intelligent identification model, and carrying out the intelligent identification of the equipment based on a preset training and verification strategy; training the equipment intelligent identification model on the training set after data enhancement, detecting the trained equipment intelligent identification model on the verification set to obtain a verified equipment intelligent identification model, and evaluating the verified equipment intelligent identification model on the test set to obtain the equipment intelligent identification model. And finally, deploying the tested equipment intelligent identification model on the mobile terminal, so that the rapid identification of the assembly equipment through the</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117853843A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | Deep learning-based equipment intelligent identification method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20GUOJI&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117853843A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |