Human body action migration image generation method based on nerve radiation field

The invention relates to the field of computer graphics and deep learning, in particular to a human body action migration image generation method based on a neural radiation field, which comprises the following steps: preprocessing a source human body action image and a target action semantic mask,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KANG KEJUN, SHAO RUI, JIANG TAO, LIU YIXIU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KANG KEJUN
SHAO RUI
JIANG TAO
LIU YIXIU
description The invention relates to the field of computer graphics and deep learning, in particular to a human body action migration image generation method based on a neural radiation field, which comprises the following steps: preprocessing a source human body action image and a target action semantic mask, and inputting a trained NeRF decoupling generator G, obtaining the probability S, the density sigma and the color C of the semantic category to which each pixel point output by the G belongs; generating a synthetic human body image, a synthetic semantic mask and a reverse semantic mask based on the semantic category probability S, the density sigma and the color C; adaptively adjusting the parameter of the G according to the synthetic semantic mask and the reverse semantic mask; and obtaining a synthesized human body image of the finally output human body action migration image again. According to the method, the problem of mutual adhesion of shapes and appearances in the action migration process of an existing met
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117853616A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117853616A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117853616A3</originalsourceid><addsrcrecordid>eNrjZAjyKM1NzFNIyk-pVEhMLsnMz1PIzUwvSgSzMnMT01MV0lPzUqECuaklGfkpCkmJxakpCkA-UKIsVaEoMSUTIp-WmZqTwsPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpOBBpbEO_sZGppbmBqbGZo5GhOjBgALzjf_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Human body action migration image generation method based on nerve radiation field</title><source>esp@cenet</source><creator>KANG KEJUN ; SHAO RUI ; JIANG TAO ; LIU YIXIU</creator><creatorcontrib>KANG KEJUN ; SHAO RUI ; JIANG TAO ; LIU YIXIU</creatorcontrib><description>The invention relates to the field of computer graphics and deep learning, in particular to a human body action migration image generation method based on a neural radiation field, which comprises the following steps: preprocessing a source human body action image and a target action semantic mask, and inputting a trained NeRF decoupling generator G, obtaining the probability S, the density sigma and the color C of the semantic category to which each pixel point output by the G belongs; generating a synthetic human body image, a synthetic semantic mask and a reverse semantic mask based on the semantic category probability S, the density sigma and the color C; adaptively adjusting the parameter of the G according to the synthetic semantic mask and the reverse semantic mask; and obtaining a synthesized human body image of the finally output human body action migration image again. According to the method, the problem of mutual adhesion of shapes and appearances in the action migration process of an existing met</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853616A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853616A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KANG KEJUN</creatorcontrib><creatorcontrib>SHAO RUI</creatorcontrib><creatorcontrib>JIANG TAO</creatorcontrib><creatorcontrib>LIU YIXIU</creatorcontrib><title>Human body action migration image generation method based on nerve radiation field</title><description>The invention relates to the field of computer graphics and deep learning, in particular to a human body action migration image generation method based on a neural radiation field, which comprises the following steps: preprocessing a source human body action image and a target action semantic mask, and inputting a trained NeRF decoupling generator G, obtaining the probability S, the density sigma and the color C of the semantic category to which each pixel point output by the G belongs; generating a synthetic human body image, a synthetic semantic mask and a reverse semantic mask based on the semantic category probability S, the density sigma and the color C; adaptively adjusting the parameter of the G according to the synthetic semantic mask and the reverse semantic mask; and obtaining a synthesized human body image of the finally output human body action migration image again. According to the method, the problem of mutual adhesion of shapes and appearances in the action migration process of an existing met</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjyKM1NzFNIyk-pVEhMLsnMz1PIzUwvSgSzMnMT01MV0lPzUqECuaklGfkpCkmJxakpCkA-UKIsVaEoMSUTIp-WmZqTwsPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpOBBpbEO_sZGppbmBqbGZo5GhOjBgALzjf_</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>KANG KEJUN</creator><creator>SHAO RUI</creator><creator>JIANG TAO</creator><creator>LIU YIXIU</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Human body action migration image generation method based on nerve radiation field</title><author>KANG KEJUN ; SHAO RUI ; JIANG TAO ; LIU YIXIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117853616A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KANG KEJUN</creatorcontrib><creatorcontrib>SHAO RUI</creatorcontrib><creatorcontrib>JIANG TAO</creatorcontrib><creatorcontrib>LIU YIXIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KANG KEJUN</au><au>SHAO RUI</au><au>JIANG TAO</au><au>LIU YIXIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Human body action migration image generation method based on nerve radiation field</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention relates to the field of computer graphics and deep learning, in particular to a human body action migration image generation method based on a neural radiation field, which comprises the following steps: preprocessing a source human body action image and a target action semantic mask, and inputting a trained NeRF decoupling generator G, obtaining the probability S, the density sigma and the color C of the semantic category to which each pixel point output by the G belongs; generating a synthetic human body image, a synthetic semantic mask and a reverse semantic mask based on the semantic category probability S, the density sigma and the color C; adaptively adjusting the parameter of the G according to the synthetic semantic mask and the reverse semantic mask; and obtaining a synthesized human body image of the finally output human body action migration image again. According to the method, the problem of mutual adhesion of shapes and appearances in the action migration process of an existing met</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117853616A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Human body action migration image generation method based on nerve radiation field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KANG%20KEJUN&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117853616A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true