Lightweight deep learning compression imaging method and device based on physical inspiration

The invention relates to a lightweight deep learning compression imaging method and device based on physical inspiration. The method comprises the following steps: constructing a compressed holographic sensing model; acquiring low-dimensional diffracted intensity by using a compressed holographic se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG CHENG, CHENG HONG, ZHANG QUANBING, HAN PENG, SHEN CHUAN, SHI JISEN, WEI SUI, ZHOU HAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG CHENG
CHENG HONG
ZHANG QUANBING
HAN PENG
SHEN CHUAN
SHI JISEN
WEI SUI
ZHOU HAO
description The invention relates to a lightweight deep learning compression imaging method and device based on physical inspiration. The method comprises the following steps: constructing a compressed holographic sensing model; acquiring low-dimensional diffracted intensity by using a compressed holographic sensing model, constructing a computational imaging frame by using a computational super-resolution reconstruction method, and recovering complex-value amplitude from the low-dimensional diffracted intensity by using the computational imaging frame; respectively constructing a lightweight calculation imaging framework and a distance generation network based on an LIST layer; determining a lightweight deep learning compression holographic imaging model by using a lightweight calculation imaging framework and the distance generation network; and carrying out compressed holographic imaging by using the lightweight deep learning compressed holographic imaging model. The method disclosed by the invention consumes less tim
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117853336A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117853336A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117853336A3</originalsourceid><addsrcrecordid>eNqNy70KwkAQBOA0FqK-w_oAFuHwpw1BsRArWwnr3ZhbSO6O7KH49ibgA9jMwPDNvLhfpPX5jSnJAYk68BAktGRjnwaoSgwkPbfT1iP76IiDG_FLLOjBCkcjSf6jYrkjCZpk4Dz-lsXsyZ1i9etFsT4db_V5gxQbaGKLgNzU17LcH7bGmF1l_jFfOSY8tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight deep learning compression imaging method and device based on physical inspiration</title><source>esp@cenet</source><creator>ZHANG CHENG ; CHENG HONG ; ZHANG QUANBING ; HAN PENG ; SHEN CHUAN ; SHI JISEN ; WEI SUI ; ZHOU HAO</creator><creatorcontrib>ZHANG CHENG ; CHENG HONG ; ZHANG QUANBING ; HAN PENG ; SHEN CHUAN ; SHI JISEN ; WEI SUI ; ZHOU HAO</creatorcontrib><description>The invention relates to a lightweight deep learning compression imaging method and device based on physical inspiration. The method comprises the following steps: constructing a compressed holographic sensing model; acquiring low-dimensional diffracted intensity by using a compressed holographic sensing model, constructing a computational imaging frame by using a computational super-resolution reconstruction method, and recovering complex-value amplitude from the low-dimensional diffracted intensity by using the computational imaging frame; respectively constructing a lightweight calculation imaging framework and a distance generation network based on an LIST layer; determining a lightweight deep learning compression holographic imaging model by using a lightweight calculation imaging framework and the distance generation network; and carrying out compressed holographic imaging by using the lightweight deep learning compressed holographic imaging model. The method disclosed by the invention consumes less tim</description><language>chi ; eng</language><subject>CALCULATING ; CINEMATOGRAPHY ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROGRAPHY ; HOLOGRAPHIC PROCESSES OR APPARATUS ; HOLOGRAPHY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHOTOGRAPHY ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853336A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117853336A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CHENG</creatorcontrib><creatorcontrib>CHENG HONG</creatorcontrib><creatorcontrib>ZHANG QUANBING</creatorcontrib><creatorcontrib>HAN PENG</creatorcontrib><creatorcontrib>SHEN CHUAN</creatorcontrib><creatorcontrib>SHI JISEN</creatorcontrib><creatorcontrib>WEI SUI</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><title>Lightweight deep learning compression imaging method and device based on physical inspiration</title><description>The invention relates to a lightweight deep learning compression imaging method and device based on physical inspiration. The method comprises the following steps: constructing a compressed holographic sensing model; acquiring low-dimensional diffracted intensity by using a compressed holographic sensing model, constructing a computational imaging frame by using a computational super-resolution reconstruction method, and recovering complex-value amplitude from the low-dimensional diffracted intensity by using the computational imaging frame; respectively constructing a lightweight calculation imaging framework and a distance generation network based on an LIST layer; determining a lightweight deep learning compression holographic imaging model by using a lightweight calculation imaging framework and the distance generation network; and carrying out compressed holographic imaging by using the lightweight deep learning compressed holographic imaging model. The method disclosed by the invention consumes less tim</description><subject>CALCULATING</subject><subject>CINEMATOGRAPHY</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROGRAPHY</subject><subject>HOLOGRAPHIC PROCESSES OR APPARATUS</subject><subject>HOLOGRAPHY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHOTOGRAPHY</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy70KwkAQBOA0FqK-w_oAFuHwpw1BsRArWwnr3ZhbSO6O7KH49ibgA9jMwPDNvLhfpPX5jSnJAYk68BAktGRjnwaoSgwkPbfT1iP76IiDG_FLLOjBCkcjSf6jYrkjCZpk4Dz-lsXsyZ1i9etFsT4db_V5gxQbaGKLgNzU17LcH7bGmF1l_jFfOSY8tw</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>ZHANG CHENG</creator><creator>CHENG HONG</creator><creator>ZHANG QUANBING</creator><creator>HAN PENG</creator><creator>SHEN CHUAN</creator><creator>SHI JISEN</creator><creator>WEI SUI</creator><creator>ZHOU HAO</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Lightweight deep learning compression imaging method and device based on physical inspiration</title><author>ZHANG CHENG ; CHENG HONG ; ZHANG QUANBING ; HAN PENG ; SHEN CHUAN ; SHI JISEN ; WEI SUI ; ZHOU HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117853336A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CINEMATOGRAPHY</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROGRAPHY</topic><topic>HOLOGRAPHIC PROCESSES OR APPARATUS</topic><topic>HOLOGRAPHY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHOTOGRAPHY</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CHENG</creatorcontrib><creatorcontrib>CHENG HONG</creatorcontrib><creatorcontrib>ZHANG QUANBING</creatorcontrib><creatorcontrib>HAN PENG</creatorcontrib><creatorcontrib>SHEN CHUAN</creatorcontrib><creatorcontrib>SHI JISEN</creatorcontrib><creatorcontrib>WEI SUI</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CHENG</au><au>CHENG HONG</au><au>ZHANG QUANBING</au><au>HAN PENG</au><au>SHEN CHUAN</au><au>SHI JISEN</au><au>WEI SUI</au><au>ZHOU HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight deep learning compression imaging method and device based on physical inspiration</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention relates to a lightweight deep learning compression imaging method and device based on physical inspiration. The method comprises the following steps: constructing a compressed holographic sensing model; acquiring low-dimensional diffracted intensity by using a compressed holographic sensing model, constructing a computational imaging frame by using a computational super-resolution reconstruction method, and recovering complex-value amplitude from the low-dimensional diffracted intensity by using the computational imaging frame; respectively constructing a lightweight calculation imaging framework and a distance generation network based on an LIST layer; determining a lightweight deep learning compression holographic imaging model by using a lightweight calculation imaging framework and the distance generation network; and carrying out compressed holographic imaging by using the lightweight deep learning compressed holographic imaging model. The method disclosed by the invention consumes less tim</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117853336A
source esp@cenet
subjects CALCULATING
CINEMATOGRAPHY
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTROGRAPHY
HOLOGRAPHIC PROCESSES OR APPARATUS
HOLOGRAPHY
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHOTOGRAPHY
PHYSICS
title Lightweight deep learning compression imaging method and device based on physical inspiration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CHENG&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117853336A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true