Data enhancement partial discharge detection method based on generalized S transformation

The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU HAIYAN, HOU SHUHAN, HUANG XINGYU, ZHANG YI, ZHOU PENG, JIANG JIANGSONG, LIAO JINGSONG, YANG CHUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU HAIYAN
HOU SHUHAN
HUANG XINGYU
ZHANG YI
ZHOU PENG
JIANG JIANGSONG
LIAO JINGSONG
YANG CHUAN
description The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117851864A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117851864A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117851864A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywEoIn5powCiooGGKlrsl9iSs47srTg9QeIAVKORZubF88TKBHEsBgNEaeSkngNZn43j1IMsFEZ9FBqgLlp6cYalyXsIEgf_nvROmlhyF9PA33hZzDoOGasfF8X6cn401w3G2CKPbKZZ2-ZWlsdqX1aHXb39p_kACU47GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data enhancement partial discharge detection method based on generalized S transformation</title><source>esp@cenet</source><creator>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</creator><creatorcontrib>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</creatorcontrib><description>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117851864A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240409&amp;DB=EPODOC&amp;CC=CN&amp;NR=117851864A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU HAIYAN</creatorcontrib><creatorcontrib>HOU SHUHAN</creatorcontrib><creatorcontrib>HUANG XINGYU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>ZHOU PENG</creatorcontrib><creatorcontrib>JIANG JIANGSONG</creatorcontrib><creatorcontrib>LIAO JINGSONG</creatorcontrib><creatorcontrib>YANG CHUAN</creatorcontrib><title>Data enhancement partial discharge detection method based on generalized S transformation</title><description>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywEoIn5powCiooGGKlrsl9iSs47srTg9QeIAVKORZubF88TKBHEsBgNEaeSkngNZn43j1IMsFEZ9FBqgLlp6cYalyXsIEgf_nvROmlhyF9PA33hZzDoOGasfF8X6cn401w3G2CKPbKZZ2-ZWlsdqX1aHXb39p_kACU47GQ</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>WU HAIYAN</creator><creator>HOU SHUHAN</creator><creator>HUANG XINGYU</creator><creator>ZHANG YI</creator><creator>ZHOU PENG</creator><creator>JIANG JIANGSONG</creator><creator>LIAO JINGSONG</creator><creator>YANG CHUAN</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Data enhancement partial discharge detection method based on generalized S transformation</title><author>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117851864A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WU HAIYAN</creatorcontrib><creatorcontrib>HOU SHUHAN</creatorcontrib><creatorcontrib>HUANG XINGYU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>ZHOU PENG</creatorcontrib><creatorcontrib>JIANG JIANGSONG</creatorcontrib><creatorcontrib>LIAO JINGSONG</creatorcontrib><creatorcontrib>YANG CHUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU HAIYAN</au><au>HOU SHUHAN</au><au>HUANG XINGYU</au><au>ZHANG YI</au><au>ZHOU PENG</au><au>JIANG JIANGSONG</au><au>LIAO JINGSONG</au><au>YANG CHUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data enhancement partial discharge detection method based on generalized S transformation</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117851864A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Data enhancement partial discharge detection method based on generalized S transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20HAIYAN&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117851864A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true