Data enhancement partial discharge detection method based on generalized S transformation
The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampl...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WU HAIYAN HOU SHUHAN HUANG XINGYU ZHANG YI ZHOU PENG JIANG JIANGSONG LIAO JINGSONG YANG CHUAN |
description | The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117851864A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117851864A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117851864A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywEoIn5powCiooGGKlrsl9iSs47srTg9QeIAVKORZubF88TKBHEsBgNEaeSkngNZn43j1IMsFEZ9FBqgLlp6cYalyXsIEgf_nvROmlhyF9PA33hZzDoOGasfF8X6cn401w3G2CKPbKZZ2-ZWlsdqX1aHXb39p_kACU47GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data enhancement partial discharge detection method based on generalized S transformation</title><source>esp@cenet</source><creator>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</creator><creatorcontrib>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</creatorcontrib><description>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240409&DB=EPODOC&CC=CN&NR=117851864A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240409&DB=EPODOC&CC=CN&NR=117851864A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU HAIYAN</creatorcontrib><creatorcontrib>HOU SHUHAN</creatorcontrib><creatorcontrib>HUANG XINGYU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>ZHOU PENG</creatorcontrib><creatorcontrib>JIANG JIANGSONG</creatorcontrib><creatorcontrib>LIAO JINGSONG</creatorcontrib><creatorcontrib>YANG CHUAN</creatorcontrib><title>Data enhancement partial discharge detection method based on generalized S transformation</title><description>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywEoIn5powCiooGGKlrsl9iSs47srTg9QeIAVKORZubF88TKBHEsBgNEaeSkngNZn43j1IMsFEZ9FBqgLlp6cYalyXsIEgf_nvROmlhyF9PA33hZzDoOGasfF8X6cn401w3G2CKPbKZZ2-ZWlsdqX1aHXb39p_kACU47GQ</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>WU HAIYAN</creator><creator>HOU SHUHAN</creator><creator>HUANG XINGYU</creator><creator>ZHANG YI</creator><creator>ZHOU PENG</creator><creator>JIANG JIANGSONG</creator><creator>LIAO JINGSONG</creator><creator>YANG CHUAN</creator><scope>EVB</scope></search><sort><creationdate>20240409</creationdate><title>Data enhancement partial discharge detection method based on generalized S transformation</title><author>WU HAIYAN ; HOU SHUHAN ; HUANG XINGYU ; ZHANG YI ; ZHOU PENG ; JIANG JIANGSONG ; LIAO JINGSONG ; YANG CHUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117851864A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WU HAIYAN</creatorcontrib><creatorcontrib>HOU SHUHAN</creatorcontrib><creatorcontrib>HUANG XINGYU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>ZHOU PENG</creatorcontrib><creatorcontrib>JIANG JIANGSONG</creatorcontrib><creatorcontrib>LIAO JINGSONG</creatorcontrib><creatorcontrib>YANG CHUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU HAIYAN</au><au>HOU SHUHAN</au><au>HUANG XINGYU</au><au>ZHANG YI</au><au>ZHOU PENG</au><au>JIANG JIANGSONG</au><au>LIAO JINGSONG</au><au>YANG CHUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data enhancement partial discharge detection method based on generalized S transformation</title><date>2024-04-09</date><risdate>2024</risdate><abstract>The invention relates to a data enhancement partial discharge detection method based on generalized S transformation, and belongs to the field of partial discharge detection. The method comprises the following steps: carrying out generalized S transformation of an initialization parameter on a sampling signal to obtain a time-frequency distribution grey-scale map of a partial discharge signal; inputting the obtained time-frequency distribution grey-scale map into a lightweight neural network, and calculating the average loss value and the accuracy rate of the model after each round of training; constructing a multi-target nonlinear optimization problem with the minimum average loss value and the maximum average accuracy; the optimal solution for solving the optimization problem is used for updating parameters of generalized S transformation and used for model training of the next round; deploying the trained lightweight model to micro MUC hardware for online identification of partial discharge of electrical e</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117851864A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Data enhancement partial discharge detection method based on generalized S transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20HAIYAN&rft.date=2024-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117851864A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |