Transform-XL-based keyword article generation method

The invention discloses a transform-XL-based keyword article generation method, and relates to the field of NLP text generation. The method for generating the article based on the keywords of the transform-XL mainly comprises the links of data collection, data processing, network construction, model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO MENGJIA, YU WENLI, FAN SHUNGUO, ZHAO BIN, CAO LINA, ZHANG SHUYU, HOU SHENGWEN, YAO KAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO MENGJIA
YU WENLI
FAN SHUNGUO
ZHAO BIN
CAO LINA
ZHANG SHUYU
HOU SHENGWEN
YAO KAI
description The invention discloses a transform-XL-based keyword article generation method, and relates to the field of NLP text generation. The method for generating the article based on the keywords of the transform-XL mainly comprises the links of data collection, data processing, network construction, model training and effect verification. According to the method for generating the article through the keywords based on the transform-XL, the idea is innovated in the aspect of sample construction, topic requirements of public users are met by crawling hot topic construction, the limitation that samples are only constructed in a certain single field in the past is broken through, and the method for automatically verifying the effect of a text generation model is provided; the method has the advantages that model verification efficiency and iteration speed are greatly improved, a transform-XL depth model is applied to a keyword generation article task, long texts can be quickly processed, and the limitation that a tradi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117829278A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117829278A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117829278A3</originalsourceid><addsrcrecordid>eNrjZDAJKUrMK07LL8rVjfDRTUosTk1RyE6tLM8vSlFILCrJTM5JVUhPzUstSizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFiclAHSXxzn6GhuYWRpZG5haOxsSoAQA-wC0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transform-XL-based keyword article generation method</title><source>esp@cenet</source><creator>CAO MENGJIA ; YU WENLI ; FAN SHUNGUO ; ZHAO BIN ; CAO LINA ; ZHANG SHUYU ; HOU SHENGWEN ; YAO KAI</creator><creatorcontrib>CAO MENGJIA ; YU WENLI ; FAN SHUNGUO ; ZHAO BIN ; CAO LINA ; ZHANG SHUYU ; HOU SHENGWEN ; YAO KAI</creatorcontrib><description>The invention discloses a transform-XL-based keyword article generation method, and relates to the field of NLP text generation. The method for generating the article based on the keywords of the transform-XL mainly comprises the links of data collection, data processing, network construction, model training and effect verification. According to the method for generating the article through the keywords based on the transform-XL, the idea is innovated in the aspect of sample construction, topic requirements of public users are met by crawling hot topic construction, the limitation that samples are only constructed in a certain single field in the past is broken through, and the method for automatically verifying the effect of a text generation model is provided; the method has the advantages that model verification efficiency and iteration speed are greatly improved, a transform-XL depth model is applied to a keyword generation article task, long texts can be quickly processed, and the limitation that a tradi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240405&amp;DB=EPODOC&amp;CC=CN&amp;NR=117829278A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240405&amp;DB=EPODOC&amp;CC=CN&amp;NR=117829278A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO MENGJIA</creatorcontrib><creatorcontrib>YU WENLI</creatorcontrib><creatorcontrib>FAN SHUNGUO</creatorcontrib><creatorcontrib>ZHAO BIN</creatorcontrib><creatorcontrib>CAO LINA</creatorcontrib><creatorcontrib>ZHANG SHUYU</creatorcontrib><creatorcontrib>HOU SHENGWEN</creatorcontrib><creatorcontrib>YAO KAI</creatorcontrib><title>Transform-XL-based keyword article generation method</title><description>The invention discloses a transform-XL-based keyword article generation method, and relates to the field of NLP text generation. The method for generating the article based on the keywords of the transform-XL mainly comprises the links of data collection, data processing, network construction, model training and effect verification. According to the method for generating the article through the keywords based on the transform-XL, the idea is innovated in the aspect of sample construction, topic requirements of public users are met by crawling hot topic construction, the limitation that samples are only constructed in a certain single field in the past is broken through, and the method for automatically verifying the effect of a text generation model is provided; the method has the advantages that model verification efficiency and iteration speed are greatly improved, a transform-XL depth model is applied to a keyword generation article task, long texts can be quickly processed, and the limitation that a tradi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAJKUrMK07LL8rVjfDRTUosTk1RyE6tLM8vSlFILCrJTM5JVUhPzUstSizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFiclAHSXxzn6GhuYWRpZG5haOxsSoAQA-wC0E</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>CAO MENGJIA</creator><creator>YU WENLI</creator><creator>FAN SHUNGUO</creator><creator>ZHAO BIN</creator><creator>CAO LINA</creator><creator>ZHANG SHUYU</creator><creator>HOU SHENGWEN</creator><creator>YAO KAI</creator><scope>EVB</scope></search><sort><creationdate>20240405</creationdate><title>Transform-XL-based keyword article generation method</title><author>CAO MENGJIA ; YU WENLI ; FAN SHUNGUO ; ZHAO BIN ; CAO LINA ; ZHANG SHUYU ; HOU SHENGWEN ; YAO KAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117829278A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO MENGJIA</creatorcontrib><creatorcontrib>YU WENLI</creatorcontrib><creatorcontrib>FAN SHUNGUO</creatorcontrib><creatorcontrib>ZHAO BIN</creatorcontrib><creatorcontrib>CAO LINA</creatorcontrib><creatorcontrib>ZHANG SHUYU</creatorcontrib><creatorcontrib>HOU SHENGWEN</creatorcontrib><creatorcontrib>YAO KAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO MENGJIA</au><au>YU WENLI</au><au>FAN SHUNGUO</au><au>ZHAO BIN</au><au>CAO LINA</au><au>ZHANG SHUYU</au><au>HOU SHENGWEN</au><au>YAO KAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transform-XL-based keyword article generation method</title><date>2024-04-05</date><risdate>2024</risdate><abstract>The invention discloses a transform-XL-based keyword article generation method, and relates to the field of NLP text generation. The method for generating the article based on the keywords of the transform-XL mainly comprises the links of data collection, data processing, network construction, model training and effect verification. According to the method for generating the article through the keywords based on the transform-XL, the idea is innovated in the aspect of sample construction, topic requirements of public users are met by crawling hot topic construction, the limitation that samples are only constructed in a certain single field in the past is broken through, and the method for automatically verifying the effect of a text generation model is provided; the method has the advantages that model verification efficiency and iteration speed are greatly improved, a transform-XL depth model is applied to a keyword generation article task, long texts can be quickly processed, and the limitation that a tradi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117829278A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Transform-XL-based keyword article generation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20MENGJIA&rft.date=2024-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117829278A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true