Control law automatic design method based on long short-term memory network
According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIN PING LUO WUYI LIN YUYE WANG XIAOFENG GONG QINGHAI WANG LUDI ZHOU HUI JIA CHENHUI ZHAI WENJING HUANG XU LI XIAOMIN WANG ZHAOLEI YU CHUNMEI LU KUNFENG HU RUIGUANG |
description | According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved.
本发明一种基于长短期记忆网络的 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117826591A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117826591A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117826591A3</originalsourceid><addsrcrecordid>eNrjZPB2zs8rKcrPUchJLFdILC3Jz00syUxWSEktzkzPU8hNLcnIT1FISixOTVHIz1PIyc9LVyjOyC8q0S1JLcoFyufmF1Uq5KWWlOcXZfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKDKeGc_Q0NzCyMzU0tDR2Ni1AAAcAs1rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Control law automatic design method based on long short-term memory network</title><source>esp@cenet</source><creator>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</creator><creatorcontrib>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</creatorcontrib><description>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved.
本发明一种基于长短期记忆网络的</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240405&DB=EPODOC&CC=CN&NR=117826591A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240405&DB=EPODOC&CC=CN&NR=117826591A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN PING</creatorcontrib><creatorcontrib>LUO WUYI</creatorcontrib><creatorcontrib>LIN YUYE</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>GONG QINGHAI</creatorcontrib><creatorcontrib>WANG LUDI</creatorcontrib><creatorcontrib>ZHOU HUI</creatorcontrib><creatorcontrib>JIA CHENHUI</creatorcontrib><creatorcontrib>ZHAI WENJING</creatorcontrib><creatorcontrib>HUANG XU</creatorcontrib><creatorcontrib>LI XIAOMIN</creatorcontrib><creatorcontrib>WANG ZHAOLEI</creatorcontrib><creatorcontrib>YU CHUNMEI</creatorcontrib><creatorcontrib>LU KUNFENG</creatorcontrib><creatorcontrib>HU RUIGUANG</creatorcontrib><title>Control law automatic design method based on long short-term memory network</title><description>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved.
本发明一种基于长短期记忆网络的</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2zs8rKcrPUchJLFdILC3Jz00syUxWSEktzkzPU8hNLcnIT1FISixOTVHIz1PIyc9LVyjOyC8q0S1JLcoFyufmF1Uq5KWWlOcXZfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKDKeGc_Q0NzCyMzU0tDR2Ni1AAAcAs1rQ</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>LIN PING</creator><creator>LUO WUYI</creator><creator>LIN YUYE</creator><creator>WANG XIAOFENG</creator><creator>GONG QINGHAI</creator><creator>WANG LUDI</creator><creator>ZHOU HUI</creator><creator>JIA CHENHUI</creator><creator>ZHAI WENJING</creator><creator>HUANG XU</creator><creator>LI XIAOMIN</creator><creator>WANG ZHAOLEI</creator><creator>YU CHUNMEI</creator><creator>LU KUNFENG</creator><creator>HU RUIGUANG</creator><scope>EVB</scope></search><sort><creationdate>20240405</creationdate><title>Control law automatic design method based on long short-term memory network</title><author>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117826591A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN PING</creatorcontrib><creatorcontrib>LUO WUYI</creatorcontrib><creatorcontrib>LIN YUYE</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>GONG QINGHAI</creatorcontrib><creatorcontrib>WANG LUDI</creatorcontrib><creatorcontrib>ZHOU HUI</creatorcontrib><creatorcontrib>JIA CHENHUI</creatorcontrib><creatorcontrib>ZHAI WENJING</creatorcontrib><creatorcontrib>HUANG XU</creatorcontrib><creatorcontrib>LI XIAOMIN</creatorcontrib><creatorcontrib>WANG ZHAOLEI</creatorcontrib><creatorcontrib>YU CHUNMEI</creatorcontrib><creatorcontrib>LU KUNFENG</creatorcontrib><creatorcontrib>HU RUIGUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN PING</au><au>LUO WUYI</au><au>LIN YUYE</au><au>WANG XIAOFENG</au><au>GONG QINGHAI</au><au>WANG LUDI</au><au>ZHOU HUI</au><au>JIA CHENHUI</au><au>ZHAI WENJING</au><au>HUANG XU</au><au>LI XIAOMIN</au><au>WANG ZHAOLEI</au><au>YU CHUNMEI</au><au>LU KUNFENG</au><au>HU RUIGUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Control law automatic design method based on long short-term memory network</title><date>2024-04-05</date><risdate>2024</risdate><abstract>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved.
本发明一种基于长短期记忆网络的</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117826591A |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Control law automatic design method based on long short-term memory network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20PING&rft.date=2024-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117826591A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |