Control law automatic design method based on long short-term memory network

According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN PING, LUO WUYI, LIN YUYE, WANG XIAOFENG, GONG QINGHAI, WANG LUDI, ZHOU HUI, JIA CHENHUI, ZHAI WENJING, HUANG XU, LI XIAOMIN, WANG ZHAOLEI, YU CHUNMEI, LU KUNFENG, HU RUIGUANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN PING
LUO WUYI
LIN YUYE
WANG XIAOFENG
GONG QINGHAI
WANG LUDI
ZHOU HUI
JIA CHENHUI
ZHAI WENJING
HUANG XU
LI XIAOMIN
WANG ZHAOLEI
YU CHUNMEI
LU KUNFENG
HU RUIGUANG
description According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved. 本发明一种基于长短期记忆网络的
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117826591A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117826591A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117826591A3</originalsourceid><addsrcrecordid>eNrjZPB2zs8rKcrPUchJLFdILC3Jz00syUxWSEktzkzPU8hNLcnIT1FISixOTVHIz1PIyc9LVyjOyC8q0S1JLcoFyufmF1Uq5KWWlOcXZfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKDKeGc_Q0NzCyMzU0tDR2Ni1AAAcAs1rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Control law automatic design method based on long short-term memory network</title><source>esp@cenet</source><creator>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</creator><creatorcontrib>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</creatorcontrib><description>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved. 本发明一种基于长短期记忆网络的</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240405&amp;DB=EPODOC&amp;CC=CN&amp;NR=117826591A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240405&amp;DB=EPODOC&amp;CC=CN&amp;NR=117826591A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN PING</creatorcontrib><creatorcontrib>LUO WUYI</creatorcontrib><creatorcontrib>LIN YUYE</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>GONG QINGHAI</creatorcontrib><creatorcontrib>WANG LUDI</creatorcontrib><creatorcontrib>ZHOU HUI</creatorcontrib><creatorcontrib>JIA CHENHUI</creatorcontrib><creatorcontrib>ZHAI WENJING</creatorcontrib><creatorcontrib>HUANG XU</creatorcontrib><creatorcontrib>LI XIAOMIN</creatorcontrib><creatorcontrib>WANG ZHAOLEI</creatorcontrib><creatorcontrib>YU CHUNMEI</creatorcontrib><creatorcontrib>LU KUNFENG</creatorcontrib><creatorcontrib>HU RUIGUANG</creatorcontrib><title>Control law automatic design method based on long short-term memory network</title><description>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved. 本发明一种基于长短期记忆网络的</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2zs8rKcrPUchJLFdILC3Jz00syUxWSEktzkzPU8hNLcnIT1FISixOTVHIz1PIyc9LVyjOyC8q0S1JLcoFyufmF1Uq5KWWlOcXZfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKDKeGc_Q0NzCyMzU0tDR2Ni1AAAcAs1rQ</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>LIN PING</creator><creator>LUO WUYI</creator><creator>LIN YUYE</creator><creator>WANG XIAOFENG</creator><creator>GONG QINGHAI</creator><creator>WANG LUDI</creator><creator>ZHOU HUI</creator><creator>JIA CHENHUI</creator><creator>ZHAI WENJING</creator><creator>HUANG XU</creator><creator>LI XIAOMIN</creator><creator>WANG ZHAOLEI</creator><creator>YU CHUNMEI</creator><creator>LU KUNFENG</creator><creator>HU RUIGUANG</creator><scope>EVB</scope></search><sort><creationdate>20240405</creationdate><title>Control law automatic design method based on long short-term memory network</title><author>LIN PING ; LUO WUYI ; LIN YUYE ; WANG XIAOFENG ; GONG QINGHAI ; WANG LUDI ; ZHOU HUI ; JIA CHENHUI ; ZHAI WENJING ; HUANG XU ; LI XIAOMIN ; WANG ZHAOLEI ; YU CHUNMEI ; LU KUNFENG ; HU RUIGUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117826591A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN PING</creatorcontrib><creatorcontrib>LUO WUYI</creatorcontrib><creatorcontrib>LIN YUYE</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>GONG QINGHAI</creatorcontrib><creatorcontrib>WANG LUDI</creatorcontrib><creatorcontrib>ZHOU HUI</creatorcontrib><creatorcontrib>JIA CHENHUI</creatorcontrib><creatorcontrib>ZHAI WENJING</creatorcontrib><creatorcontrib>HUANG XU</creatorcontrib><creatorcontrib>LI XIAOMIN</creatorcontrib><creatorcontrib>WANG ZHAOLEI</creatorcontrib><creatorcontrib>YU CHUNMEI</creatorcontrib><creatorcontrib>LU KUNFENG</creatorcontrib><creatorcontrib>HU RUIGUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN PING</au><au>LUO WUYI</au><au>LIN YUYE</au><au>WANG XIAOFENG</au><au>GONG QINGHAI</au><au>WANG LUDI</au><au>ZHOU HUI</au><au>JIA CHENHUI</au><au>ZHAI WENJING</au><au>HUANG XU</au><au>LI XIAOMIN</au><au>WANG ZHAOLEI</au><au>YU CHUNMEI</au><au>LU KUNFENG</au><au>HU RUIGUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Control law automatic design method based on long short-term memory network</title><date>2024-04-05</date><risdate>2024</risdate><abstract>According to the control law automatic design method based on the long-short-term memory network, the control law structure design problem is converted into the directed acyclic graph topological relation automatic search problem by referring to the experience of a network architecture search method in deep learning and utilizing the advantages of a recurrent neural network in the aspect of time sequence relevance mining; according to the method, automatic generation of a flight control law control structure is realized, automatic setting of parameters under a given control law structure is realized based on a genetic algorithm, the limitation that automatic setting of controller parameters can only be carried out by utilizing a heuristic algorithm for a known controller structure in current control law automatic optimization is overcome, the workload of manual design is reduced, and the design efficiency is improved. And the control effect under the complex design input condition is improved. 本发明一种基于长短期记忆网络的</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117826591A
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Control law automatic design method based on long short-term memory network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20PING&rft.date=2024-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117826591A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true