Multiple calibration single classification method for unsupervised time sequence anomaly detection

The invention relates to a multiple calibration single classification method for unsupervised time sequence anomaly detection. Firstly, a self-adaptive reconstruction strategy is provided, a reconstruction target is calibrated by punishing a sample with a high outlier feature, and the learning quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU RONG, LI ZUOYONG, CAO XINRONG, CHEN ZEJIAN, FAN HAOYI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU RONG
LI ZUOYONG
CAO XINRONG
CHEN ZEJIAN
FAN HAOYI
description The invention relates to a multiple calibration single classification method for unsupervised time sequence anomaly detection. Firstly, a self-adaptive reconstruction strategy is provided, a reconstruction target is calibrated by punishing a sample with a high outlier feature, and the learning quality of a normal feature is improved; secondly, in order to solve the problem of abnormal pollution in training samples, uncertainty modeling and time series data enhancement are combined, and prediction with high uncertainty is adaptively punished through modeling paired samples (an original time series and an enhanced time series), so that the negative influence of potential abnormal pollution is eliminated, and learning of normal features is calibrated; and finally, artificial abnormal samples are introduced to calibrate inaccurate and prejudice normal boundaries, and a memory module is further introduced to avoid error generalization of abnormal information. Experimental results on seven real data sets show that
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117807470A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117807470A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117807470A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQBtNYiPoO6wMICQqxlaDYaGUfNpcvunB_Zu8E316CPoDVwDAzL7pLtkmiBRm20o2cJHhS8fdJWVaVQczXOqRH6GkII2WvOWJ8iaKnJA6keGZ4A2IfHNs39Ugw07csZgNbxerHRbE-HW_NeYMYWmhkA4_UNteqqvdlvavLw_af5gMC8D9e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multiple calibration single classification method for unsupervised time sequence anomaly detection</title><source>esp@cenet</source><creator>HU RONG ; LI ZUOYONG ; CAO XINRONG ; CHEN ZEJIAN ; FAN HAOYI</creator><creatorcontrib>HU RONG ; LI ZUOYONG ; CAO XINRONG ; CHEN ZEJIAN ; FAN HAOYI</creatorcontrib><description>The invention relates to a multiple calibration single classification method for unsupervised time sequence anomaly detection. Firstly, a self-adaptive reconstruction strategy is provided, a reconstruction target is calibrated by punishing a sample with a high outlier feature, and the learning quality of a normal feature is improved; secondly, in order to solve the problem of abnormal pollution in training samples, uncertainty modeling and time series data enhancement are combined, and prediction with high uncertainty is adaptively punished through modeling paired samples (an original time series and an enhanced time series), so that the negative influence of potential abnormal pollution is eliminated, and learning of normal features is calibrated; and finally, artificial abnormal samples are introduced to calibrate inaccurate and prejudice normal boundaries, and a memory module is further introduced to avoid error generalization of abnormal information. Experimental results on seven real data sets show that</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240402&amp;DB=EPODOC&amp;CC=CN&amp;NR=117807470A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240402&amp;DB=EPODOC&amp;CC=CN&amp;NR=117807470A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU RONG</creatorcontrib><creatorcontrib>LI ZUOYONG</creatorcontrib><creatorcontrib>CAO XINRONG</creatorcontrib><creatorcontrib>CHEN ZEJIAN</creatorcontrib><creatorcontrib>FAN HAOYI</creatorcontrib><title>Multiple calibration single classification method for unsupervised time sequence anomaly detection</title><description>The invention relates to a multiple calibration single classification method for unsupervised time sequence anomaly detection. Firstly, a self-adaptive reconstruction strategy is provided, a reconstruction target is calibrated by punishing a sample with a high outlier feature, and the learning quality of a normal feature is improved; secondly, in order to solve the problem of abnormal pollution in training samples, uncertainty modeling and time series data enhancement are combined, and prediction with high uncertainty is adaptively punished through modeling paired samples (an original time series and an enhanced time series), so that the negative influence of potential abnormal pollution is eliminated, and learning of normal features is calibrated; and finally, artificial abnormal samples are introduced to calibrate inaccurate and prejudice normal boundaries, and a memory module is further introduced to avoid error generalization of abnormal information. Experimental results on seven real data sets show that</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQBtNYiPoO6wMICQqxlaDYaGUfNpcvunB_Zu8E316CPoDVwDAzL7pLtkmiBRm20o2cJHhS8fdJWVaVQczXOqRH6GkII2WvOWJ8iaKnJA6keGZ4A2IfHNs39Ugw07csZgNbxerHRbE-HW_NeYMYWmhkA4_UNteqqvdlvavLw_af5gMC8D9e</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>HU RONG</creator><creator>LI ZUOYONG</creator><creator>CAO XINRONG</creator><creator>CHEN ZEJIAN</creator><creator>FAN HAOYI</creator><scope>EVB</scope></search><sort><creationdate>20240402</creationdate><title>Multiple calibration single classification method for unsupervised time sequence anomaly detection</title><author>HU RONG ; LI ZUOYONG ; CAO XINRONG ; CHEN ZEJIAN ; FAN HAOYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117807470A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU RONG</creatorcontrib><creatorcontrib>LI ZUOYONG</creatorcontrib><creatorcontrib>CAO XINRONG</creatorcontrib><creatorcontrib>CHEN ZEJIAN</creatorcontrib><creatorcontrib>FAN HAOYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU RONG</au><au>LI ZUOYONG</au><au>CAO XINRONG</au><au>CHEN ZEJIAN</au><au>FAN HAOYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multiple calibration single classification method for unsupervised time sequence anomaly detection</title><date>2024-04-02</date><risdate>2024</risdate><abstract>The invention relates to a multiple calibration single classification method for unsupervised time sequence anomaly detection. Firstly, a self-adaptive reconstruction strategy is provided, a reconstruction target is calibrated by punishing a sample with a high outlier feature, and the learning quality of a normal feature is improved; secondly, in order to solve the problem of abnormal pollution in training samples, uncertainty modeling and time series data enhancement are combined, and prediction with high uncertainty is adaptively punished through modeling paired samples (an original time series and an enhanced time series), so that the negative influence of potential abnormal pollution is eliminated, and learning of normal features is calibrated; and finally, artificial abnormal samples are introduced to calibrate inaccurate and prejudice normal boundaries, and a memory module is further introduced to avoid error generalization of abnormal information. Experimental results on seven real data sets show that</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117807470A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multiple calibration single classification method for unsupervised time sequence anomaly detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20RONG&rft.date=2024-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117807470A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true