Data set building method for active anti-collision of tower crane
The invention provides a data set building method for active anti-collision of a tower crane, which comprises the following steps: building a point cloud data acquisition system, and scanning to obtain single-frame point cloud data; replacing system settings, and repeating scanning until a preset nu...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YIN CHENBO PEI XUEFENG QIAO WENHUA XU MIAOHAN HAN DONGTING JIN PENGDA CAO XINRU ZHANG BIAO |
description | The invention provides a data set building method for active anti-collision of a tower crane, which comprises the following steps: building a point cloud data acquisition system, and scanning to obtain single-frame point cloud data; replacing system settings, and repeating scanning until a preset number of single-frame point cloud data is obtained; performing multi-frame data fusion on all single-frame point cloud data, and performing data enhancement processing, environment filtering processing and point cloud segmentation processing to obtain different target point cloud data sets; and classifying and concluding the target point cloud data set, and establishing a data set to complete the building of the data set for active anti-collision of the tower crane. According to the method, the construction site data set suitable for the tower crane can be efficiently established, the established data set is more targeted, and the deep learning model is more excellent in the anti-collision field. And active collisio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117788698A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117788698A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117788698A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMAMAsDAj4g3lAhwqJhrFqi5iY2CuTOtRSsKvEwPdZeADTLbd2bY-GUMjg_uI0sTzgSTbrBFEzYDB-E6AYV0FT4sIqoBFMP5QhZBTaulXEVGj3c-P25-HWXSpadKSyYCAhG7trXTeN98eTbw__nC_ZwjGC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data set building method for active anti-collision of tower crane</title><source>esp@cenet</source><creator>YIN CHENBO ; PEI XUEFENG ; QIAO WENHUA ; XU MIAOHAN ; HAN DONGTING ; JIN PENGDA ; CAO XINRU ; ZHANG BIAO</creator><creatorcontrib>YIN CHENBO ; PEI XUEFENG ; QIAO WENHUA ; XU MIAOHAN ; HAN DONGTING ; JIN PENGDA ; CAO XINRU ; ZHANG BIAO</creatorcontrib><description>The invention provides a data set building method for active anti-collision of a tower crane, which comprises the following steps: building a point cloud data acquisition system, and scanning to obtain single-frame point cloud data; replacing system settings, and repeating scanning until a preset number of single-frame point cloud data is obtained; performing multi-frame data fusion on all single-frame point cloud data, and performing data enhancement processing, environment filtering processing and point cloud segmentation processing to obtain different target point cloud data sets; and classifying and concluding the target point cloud data set, and establishing a data set to complete the building of the data set for active anti-collision of the tower crane. According to the method, the construction site data set suitable for the tower crane can be efficiently established, the established data set is more targeted, and the deep learning model is more excellent in the anti-collision field. And active collisio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240329&DB=EPODOC&CC=CN&NR=117788698A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240329&DB=EPODOC&CC=CN&NR=117788698A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIN CHENBO</creatorcontrib><creatorcontrib>PEI XUEFENG</creatorcontrib><creatorcontrib>QIAO WENHUA</creatorcontrib><creatorcontrib>XU MIAOHAN</creatorcontrib><creatorcontrib>HAN DONGTING</creatorcontrib><creatorcontrib>JIN PENGDA</creatorcontrib><creatorcontrib>CAO XINRU</creatorcontrib><creatorcontrib>ZHANG BIAO</creatorcontrib><title>Data set building method for active anti-collision of tower crane</title><description>The invention provides a data set building method for active anti-collision of a tower crane, which comprises the following steps: building a point cloud data acquisition system, and scanning to obtain single-frame point cloud data; replacing system settings, and repeating scanning until a preset number of single-frame point cloud data is obtained; performing multi-frame data fusion on all single-frame point cloud data, and performing data enhancement processing, environment filtering processing and point cloud segmentation processing to obtain different target point cloud data sets; and classifying and concluding the target point cloud data set, and establishing a data set to complete the building of the data set for active anti-collision of the tower crane. According to the method, the construction site data set suitable for the tower crane can be efficiently established, the established data set is more targeted, and the deep learning model is more excellent in the anti-collision field. And active collisio</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMAMAsDAj4g3lAhwqJhrFqi5iY2CuTOtRSsKvEwPdZeADTLbd2bY-GUMjg_uI0sTzgSTbrBFEzYDB-E6AYV0FT4sIqoBFMP5QhZBTaulXEVGj3c-P25-HWXSpadKSyYCAhG7trXTeN98eTbw__nC_ZwjGC</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>YIN CHENBO</creator><creator>PEI XUEFENG</creator><creator>QIAO WENHUA</creator><creator>XU MIAOHAN</creator><creator>HAN DONGTING</creator><creator>JIN PENGDA</creator><creator>CAO XINRU</creator><creator>ZHANG BIAO</creator><scope>EVB</scope></search><sort><creationdate>20240329</creationdate><title>Data set building method for active anti-collision of tower crane</title><author>YIN CHENBO ; PEI XUEFENG ; QIAO WENHUA ; XU MIAOHAN ; HAN DONGTING ; JIN PENGDA ; CAO XINRU ; ZHANG BIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117788698A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIN CHENBO</creatorcontrib><creatorcontrib>PEI XUEFENG</creatorcontrib><creatorcontrib>QIAO WENHUA</creatorcontrib><creatorcontrib>XU MIAOHAN</creatorcontrib><creatorcontrib>HAN DONGTING</creatorcontrib><creatorcontrib>JIN PENGDA</creatorcontrib><creatorcontrib>CAO XINRU</creatorcontrib><creatorcontrib>ZHANG BIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIN CHENBO</au><au>PEI XUEFENG</au><au>QIAO WENHUA</au><au>XU MIAOHAN</au><au>HAN DONGTING</au><au>JIN PENGDA</au><au>CAO XINRU</au><au>ZHANG BIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data set building method for active anti-collision of tower crane</title><date>2024-03-29</date><risdate>2024</risdate><abstract>The invention provides a data set building method for active anti-collision of a tower crane, which comprises the following steps: building a point cloud data acquisition system, and scanning to obtain single-frame point cloud data; replacing system settings, and repeating scanning until a preset number of single-frame point cloud data is obtained; performing multi-frame data fusion on all single-frame point cloud data, and performing data enhancement processing, environment filtering processing and point cloud segmentation processing to obtain different target point cloud data sets; and classifying and concluding the target point cloud data set, and establishing a data set to complete the building of the data set for active anti-collision of the tower crane. According to the method, the construction site data set suitable for the tower crane can be efficiently established, the established data set is more targeted, and the deep learning model is more excellent in the anti-collision field. And active collisio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117788698A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Data set building method for active anti-collision of tower crane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIN%20CHENBO&rft.date=2024-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117788698A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |