Transform-based brain magnetic resonance image feature extraction method

The invention discloses a brain magnetic resonance image feature extraction method based on Transform. The method specifically comprises the following steps: (1) constructing a feature extraction model for brain magnetic resonance image feature extraction of each site; (2) collecting brain magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO SHANHUI, SUN DAOQING, LIU ZIFAN, CHEN FULONG, ZHU SAISAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO SHANHUI
SUN DAOQING
LIU ZIFAN
CHEN FULONG
ZHU SAISAI
description The invention discloses a brain magnetic resonance image feature extraction method based on Transform. The method specifically comprises the following steps: (1) constructing a feature extraction model for brain magnetic resonance image feature extraction of each site; (2) collecting brain magnetic resonance images, inputting the brain magnetic resonance images into the feature extraction model of the site corresponding to the features, and outputting brain static blood oxygen signals and genders corresponding to the brain static blood oxygen signals by the feature extraction model. The brain magnetic resonance image feature extraction performance is improved, and a more effective feature extraction method is provided for diagnosing brain diseases through brain magnetic resonance images in the future. 本发明公开一种基于Transformer的脑部磁共振图像的特征提取方法,具体如下:(1)构建每个站点用于脑部磁共振图像特征提取的特征提取模型;(2)采集到脑部磁共振图像输入对应特征对应站点的特征提取模型,特征提取模型输出脑部静态血氧信号及其对应的性别。提高了脑部磁共振图像特征提取的性能,并为今后通过脑部磁共振图像诊断脑部疾病提供更加有效的特征提取方法。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117788403A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117788403A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117788403A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQBa-xkOg_rB8QMERIWgmGVFbpw-byTg_MXdhbwc_3Cj_AamAYZm-GUTgkF2UtZ05YaBb2gVZ-BKi3JEgxcLAgnx3IgfUtIHxU2KqPuYU-43IwO8evhOOPhTn1t7EbSmxxQtrYIh-n7l5VTdO2l3N9rf9pvtiLNMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transform-based brain magnetic resonance image feature extraction method</title><source>esp@cenet</source><creator>ZHAO SHANHUI ; SUN DAOQING ; LIU ZIFAN ; CHEN FULONG ; ZHU SAISAI</creator><creatorcontrib>ZHAO SHANHUI ; SUN DAOQING ; LIU ZIFAN ; CHEN FULONG ; ZHU SAISAI</creatorcontrib><description>The invention discloses a brain magnetic resonance image feature extraction method based on Transform. The method specifically comprises the following steps: (1) constructing a feature extraction model for brain magnetic resonance image feature extraction of each site; (2) collecting brain magnetic resonance images, inputting the brain magnetic resonance images into the feature extraction model of the site corresponding to the features, and outputting brain static blood oxygen signals and genders corresponding to the brain static blood oxygen signals by the feature extraction model. The brain magnetic resonance image feature extraction performance is improved, and a more effective feature extraction method is provided for diagnosing brain diseases through brain magnetic resonance images in the future. 本发明公开一种基于Transformer的脑部磁共振图像的特征提取方法,具体如下:(1)构建每个站点用于脑部磁共振图像特征提取的特征提取模型;(2)采集到脑部磁共振图像输入对应特征对应站点的特征提取模型,特征提取模型输出脑部静态血氧信号及其对应的性别。提高了脑部磁共振图像特征提取的性能,并为今后通过脑部磁共振图像诊断脑部疾病提供更加有效的特征提取方法。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117788403A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117788403A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO SHANHUI</creatorcontrib><creatorcontrib>SUN DAOQING</creatorcontrib><creatorcontrib>LIU ZIFAN</creatorcontrib><creatorcontrib>CHEN FULONG</creatorcontrib><creatorcontrib>ZHU SAISAI</creatorcontrib><title>Transform-based brain magnetic resonance image feature extraction method</title><description>The invention discloses a brain magnetic resonance image feature extraction method based on Transform. The method specifically comprises the following steps: (1) constructing a feature extraction model for brain magnetic resonance image feature extraction of each site; (2) collecting brain magnetic resonance images, inputting the brain magnetic resonance images into the feature extraction model of the site corresponding to the features, and outputting brain static blood oxygen signals and genders corresponding to the brain static blood oxygen signals by the feature extraction model. The brain magnetic resonance image feature extraction performance is improved, and a more effective feature extraction method is provided for diagnosing brain diseases through brain magnetic resonance images in the future. 本发明公开一种基于Transformer的脑部磁共振图像的特征提取方法,具体如下:(1)构建每个站点用于脑部磁共振图像特征提取的特征提取模型;(2)采集到脑部磁共振图像输入对应特征对应站点的特征提取模型,特征提取模型输出脑部静态血氧信号及其对应的性别。提高了脑部磁共振图像特征提取的性能,并为今后通过脑部磁共振图像诊断脑部疾病提供更加有效的特征提取方法。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQBa-xkOg_rB8QMERIWgmGVFbpw-byTg_MXdhbwc_3Cj_AamAYZm-GUTgkF2UtZ05YaBb2gVZ-BKi3JEgxcLAgnx3IgfUtIHxU2KqPuYU-43IwO8evhOOPhTn1t7EbSmxxQtrYIh-n7l5VTdO2l3N9rf9pvtiLNMg</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>ZHAO SHANHUI</creator><creator>SUN DAOQING</creator><creator>LIU ZIFAN</creator><creator>CHEN FULONG</creator><creator>ZHU SAISAI</creator><scope>EVB</scope></search><sort><creationdate>20240329</creationdate><title>Transform-based brain magnetic resonance image feature extraction method</title><author>ZHAO SHANHUI ; SUN DAOQING ; LIU ZIFAN ; CHEN FULONG ; ZHU SAISAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117788403A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO SHANHUI</creatorcontrib><creatorcontrib>SUN DAOQING</creatorcontrib><creatorcontrib>LIU ZIFAN</creatorcontrib><creatorcontrib>CHEN FULONG</creatorcontrib><creatorcontrib>ZHU SAISAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO SHANHUI</au><au>SUN DAOQING</au><au>LIU ZIFAN</au><au>CHEN FULONG</au><au>ZHU SAISAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transform-based brain magnetic resonance image feature extraction method</title><date>2024-03-29</date><risdate>2024</risdate><abstract>The invention discloses a brain magnetic resonance image feature extraction method based on Transform. The method specifically comprises the following steps: (1) constructing a feature extraction model for brain magnetic resonance image feature extraction of each site; (2) collecting brain magnetic resonance images, inputting the brain magnetic resonance images into the feature extraction model of the site corresponding to the features, and outputting brain static blood oxygen signals and genders corresponding to the brain static blood oxygen signals by the feature extraction model. The brain magnetic resonance image feature extraction performance is improved, and a more effective feature extraction method is provided for diagnosing brain diseases through brain magnetic resonance images in the future. 本发明公开一种基于Transformer的脑部磁共振图像的特征提取方法,具体如下:(1)构建每个站点用于脑部磁共振图像特征提取的特征提取模型;(2)采集到脑部磁共振图像输入对应特征对应站点的特征提取模型,特征提取模型输出脑部静态血氧信号及其对应的性别。提高了脑部磁共振图像特征提取的性能,并为今后通过脑部磁共振图像诊断脑部疾病提供更加有效的特征提取方法。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117788403A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Transform-based brain magnetic resonance image feature extraction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20SHANHUI&rft.date=2024-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117788403A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true