ROA-DBN transformer fault diagnosis method based on data expansion

The invention belongs to the technical field of power equipment monitoring, and relates to a ROA-DBN transformer fault diagnosis method based on data expansion, and the method comprises the steps: taking fault gas data as a fault sample; standardizing the expanded data sample and dividing the data s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO LANG, PAN XIAOLU, LYU JIAWEI, DING GUILI, ZHANG ZIXI, KANG BING, TONG XIN, XU ZHIHAO, WU DIWEI, HE JIAHUI, DENG HUAPU, HOU CHENG, LIU XIAOHUA, WU XIAORUI, LI JIA, YANG FENGFAN, GAO MUFENG, HE QI, ZHANG LU, WANG ZONGYAO, ZHAO ZEYU, DU JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO LANG
PAN XIAOLU
LYU JIAWEI
DING GUILI
ZHANG ZIXI
KANG BING
TONG XIN
XU ZHIHAO
WU DIWEI
HE JIAHUI
DENG HUAPU
HOU CHENG
LIU XIAOHUA
WU XIAORUI
LI JIA
YANG FENGFAN
GAO MUFENG
HE QI
ZHANG LU
WANG ZONGYAO
ZHAO ZEYU
DU JUN
description The invention belongs to the technical field of power equipment monitoring, and relates to a ROA-DBN transformer fault diagnosis method based on data expansion, and the method comprises the steps: taking fault gas data as a fault sample; standardizing the expanded data sample and dividing the data sample into a training set and a test set; building a DBN network according to the initialization parameters, and inputting the training set into the DBN network; by taking the fault diagnosis accuracy of the DBN neural network model as fitness, optimizing the DBN model by using a bucket jellyfish optimization algorithm, and returning an optimal parameter; and constructing an ROA-DNB fault diagnosis model according to the returned optimal parameters, inputting the test set, and outputting a transformer fault diagnosis result. According to the method, the accuracy of transformer fault diagnosis can be improved by optimizing the key parameters of the ROA-DBN model. 本发明属于电力设备监测技术领域,涉及基于数据扩充的ROA-DBN变压器故障诊断方法,将故障气体数据作为故障
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117786533A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117786533A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117786533A3</originalsourceid><addsrcrecordid>eNrjZHAK8nfUdXHyUygpSswrTssvyk0tUkhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEksSVRIrSgA6sjMz-NhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaG5uYWZqbGxo7GxKgBAN-YMXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ROA-DBN transformer fault diagnosis method based on data expansion</title><source>esp@cenet</source><creator>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; LIU XIAOHUA ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; DU JUN</creator><creatorcontrib>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; LIU XIAOHUA ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; DU JUN</creatorcontrib><description>The invention belongs to the technical field of power equipment monitoring, and relates to a ROA-DBN transformer fault diagnosis method based on data expansion, and the method comprises the steps: taking fault gas data as a fault sample; standardizing the expanded data sample and dividing the data sample into a training set and a test set; building a DBN network according to the initialization parameters, and inputting the training set into the DBN network; by taking the fault diagnosis accuracy of the DBN neural network model as fitness, optimizing the DBN model by using a bucket jellyfish optimization algorithm, and returning an optimal parameter; and constructing an ROA-DNB fault diagnosis model according to the returned optimal parameters, inputting the test set, and outputting a transformer fault diagnosis result. According to the method, the accuracy of transformer fault diagnosis can be improved by optimizing the key parameters of the ROA-DBN model. 本发明属于电力设备监测技术领域,涉及基于数据扩充的ROA-DBN变压器故障诊断方法,将故障气体数据作为故障</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117786533A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117786533A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO LANG</creatorcontrib><creatorcontrib>PAN XIAOLU</creatorcontrib><creatorcontrib>LYU JIAWEI</creatorcontrib><creatorcontrib>DING GUILI</creatorcontrib><creatorcontrib>ZHANG ZIXI</creatorcontrib><creatorcontrib>KANG BING</creatorcontrib><creatorcontrib>TONG XIN</creatorcontrib><creatorcontrib>XU ZHIHAO</creatorcontrib><creatorcontrib>WU DIWEI</creatorcontrib><creatorcontrib>HE JIAHUI</creatorcontrib><creatorcontrib>DENG HUAPU</creatorcontrib><creatorcontrib>HOU CHENG</creatorcontrib><creatorcontrib>LIU XIAOHUA</creatorcontrib><creatorcontrib>WU XIAORUI</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>YANG FENGFAN</creatorcontrib><creatorcontrib>GAO MUFENG</creatorcontrib><creatorcontrib>HE QI</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>WANG ZONGYAO</creatorcontrib><creatorcontrib>ZHAO ZEYU</creatorcontrib><creatorcontrib>DU JUN</creatorcontrib><title>ROA-DBN transformer fault diagnosis method based on data expansion</title><description>The invention belongs to the technical field of power equipment monitoring, and relates to a ROA-DBN transformer fault diagnosis method based on data expansion, and the method comprises the steps: taking fault gas data as a fault sample; standardizing the expanded data sample and dividing the data sample into a training set and a test set; building a DBN network according to the initialization parameters, and inputting the training set into the DBN network; by taking the fault diagnosis accuracy of the DBN neural network model as fitness, optimizing the DBN model by using a bucket jellyfish optimization algorithm, and returning an optimal parameter; and constructing an ROA-DNB fault diagnosis model according to the returned optimal parameters, inputting the test set, and outputting a transformer fault diagnosis result. According to the method, the accuracy of transformer fault diagnosis can be improved by optimizing the key parameters of the ROA-DBN model. 本发明属于电力设备监测技术领域,涉及基于数据扩充的ROA-DBN变压器故障诊断方法,将故障气体数据作为故障</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAK8nfUdXHyUygpSswrTssvyk0tUkhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEksSVRIrSgA6sjMz-NhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaG5uYWZqbGxo7GxKgBAN-YMXo</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>LUO LANG</creator><creator>PAN XIAOLU</creator><creator>LYU JIAWEI</creator><creator>DING GUILI</creator><creator>ZHANG ZIXI</creator><creator>KANG BING</creator><creator>TONG XIN</creator><creator>XU ZHIHAO</creator><creator>WU DIWEI</creator><creator>HE JIAHUI</creator><creator>DENG HUAPU</creator><creator>HOU CHENG</creator><creator>LIU XIAOHUA</creator><creator>WU XIAORUI</creator><creator>LI JIA</creator><creator>YANG FENGFAN</creator><creator>GAO MUFENG</creator><creator>HE QI</creator><creator>ZHANG LU</creator><creator>WANG ZONGYAO</creator><creator>ZHAO ZEYU</creator><creator>DU JUN</creator><scope>EVB</scope></search><sort><creationdate>20240329</creationdate><title>ROA-DBN transformer fault diagnosis method based on data expansion</title><author>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; LIU XIAOHUA ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; DU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117786533A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO LANG</creatorcontrib><creatorcontrib>PAN XIAOLU</creatorcontrib><creatorcontrib>LYU JIAWEI</creatorcontrib><creatorcontrib>DING GUILI</creatorcontrib><creatorcontrib>ZHANG ZIXI</creatorcontrib><creatorcontrib>KANG BING</creatorcontrib><creatorcontrib>TONG XIN</creatorcontrib><creatorcontrib>XU ZHIHAO</creatorcontrib><creatorcontrib>WU DIWEI</creatorcontrib><creatorcontrib>HE JIAHUI</creatorcontrib><creatorcontrib>DENG HUAPU</creatorcontrib><creatorcontrib>HOU CHENG</creatorcontrib><creatorcontrib>LIU XIAOHUA</creatorcontrib><creatorcontrib>WU XIAORUI</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>YANG FENGFAN</creatorcontrib><creatorcontrib>GAO MUFENG</creatorcontrib><creatorcontrib>HE QI</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>WANG ZONGYAO</creatorcontrib><creatorcontrib>ZHAO ZEYU</creatorcontrib><creatorcontrib>DU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO LANG</au><au>PAN XIAOLU</au><au>LYU JIAWEI</au><au>DING GUILI</au><au>ZHANG ZIXI</au><au>KANG BING</au><au>TONG XIN</au><au>XU ZHIHAO</au><au>WU DIWEI</au><au>HE JIAHUI</au><au>DENG HUAPU</au><au>HOU CHENG</au><au>LIU XIAOHUA</au><au>WU XIAORUI</au><au>LI JIA</au><au>YANG FENGFAN</au><au>GAO MUFENG</au><au>HE QI</au><au>ZHANG LU</au><au>WANG ZONGYAO</au><au>ZHAO ZEYU</au><au>DU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ROA-DBN transformer fault diagnosis method based on data expansion</title><date>2024-03-29</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of power equipment monitoring, and relates to a ROA-DBN transformer fault diagnosis method based on data expansion, and the method comprises the steps: taking fault gas data as a fault sample; standardizing the expanded data sample and dividing the data sample into a training set and a test set; building a DBN network according to the initialization parameters, and inputting the training set into the DBN network; by taking the fault diagnosis accuracy of the DBN neural network model as fitness, optimizing the DBN model by using a bucket jellyfish optimization algorithm, and returning an optimal parameter; and constructing an ROA-DNB fault diagnosis model according to the returned optimal parameters, inputting the test set, and outputting a transformer fault diagnosis result. According to the method, the accuracy of transformer fault diagnosis can be improved by optimizing the key parameters of the ROA-DBN model. 本发明属于电力设备监测技术领域,涉及基于数据扩充的ROA-DBN变压器故障诊断方法,将故障气体数据作为故障</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117786533A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ROA-DBN transformer fault diagnosis method based on data expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20LANG&rft.date=2024-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117786533A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true