Oil-immersed transformer fault diagnosis method based on multi-source data fusion

The invention belongs to the technical field of transformer fault diagnosis, and relates to an oil-immersed transformer fault diagnosis method based on multi-source data fusion, which comprises the following steps of: selecting five gases as indexes for analyzing gas dissolved in transformer oil, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO LANG, PAN XIAOLU, LYU JIAWEI, TANG WEI, DING GUILI, ZHANG ZIXI, KANG BING, TONG XIN, XU ZHIHAO, WU DIWEI, HE JIAHUI, DENG HUAPU, HOU CHENG, WU XIAORUI, LI JIA, YANG FENGFAN, GAO MUFENG, HE QI, ZHANG LU, WANG ZONGYAO, ZHAO ZEYU, WANG YONGJIE, DU JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO LANG
PAN XIAOLU
LYU JIAWEI
TANG WEI
DING GUILI
ZHANG ZIXI
KANG BING
TONG XIN
XU ZHIHAO
WU DIWEI
HE JIAHUI
DENG HUAPU
HOU CHENG
WU XIAORUI
LI JIA
YANG FENGFAN
GAO MUFENG
HE QI
ZHANG LU
WANG ZONGYAO
ZHAO ZEYU
WANG YONGJIE
DU JUN
description The invention belongs to the technical field of transformer fault diagnosis, and relates to an oil-immersed transformer fault diagnosis method based on multi-source data fusion, which comprises the following steps of: selecting five gases as indexes for analyzing gas dissolved in transformer oil, a winding direct-current resistance unbalance coefficient, a winding absorption ratio, a polarization index, an iron core grounding current and a micro-water content; constructing a multi-source information fusion index; the multi-source information fusion indexes and the corresponding transformer fault types form a data set, and the data set is input into an SVM network for training; kernel function parameters and penalty parameters are optimized by adopting a zebra algorithm, and the established ZOA-SVM transformer fault diagnosis model is used for transformer fault diagnosis. According to the method, various state information amounts are analyzed through multi-source information fusion of the transformer, the SVM
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117786516A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117786516A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117786516A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHvxIOof1gfkEMTWqxTFkyJ4L2uz0YUkW7LJ_63gAzwNw8yyud84GI6RspKDkjGplzwreKyhgGN8JVFWiFTe4uCJ31ESxDmzUal5JHBYEHxVlrRuFh6D0ubHVbM9nx79xdAkA-mEIyUqQ3-1tusO7d62x90_zwcK-zgX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Oil-immersed transformer fault diagnosis method based on multi-source data fusion</title><source>esp@cenet</source><creator>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; TANG WEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; WANG YONGJIE ; DU JUN</creator><creatorcontrib>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; TANG WEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; WANG YONGJIE ; DU JUN</creatorcontrib><description>The invention belongs to the technical field of transformer fault diagnosis, and relates to an oil-immersed transformer fault diagnosis method based on multi-source data fusion, which comprises the following steps of: selecting five gases as indexes for analyzing gas dissolved in transformer oil, a winding direct-current resistance unbalance coefficient, a winding absorption ratio, a polarization index, an iron core grounding current and a micro-water content; constructing a multi-source information fusion index; the multi-source information fusion indexes and the corresponding transformer fault types form a data set, and the data set is input into an SVM network for training; kernel function parameters and penalty parameters are optimized by adopting a zebra algorithm, and the established ZOA-SVM transformer fault diagnosis model is used for transformer fault diagnosis. According to the method, various state information amounts are analyzed through multi-source information fusion of the transformer, the SVM</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117786516A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240329&amp;DB=EPODOC&amp;CC=CN&amp;NR=117786516A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO LANG</creatorcontrib><creatorcontrib>PAN XIAOLU</creatorcontrib><creatorcontrib>LYU JIAWEI</creatorcontrib><creatorcontrib>TANG WEI</creatorcontrib><creatorcontrib>DING GUILI</creatorcontrib><creatorcontrib>ZHANG ZIXI</creatorcontrib><creatorcontrib>KANG BING</creatorcontrib><creatorcontrib>TONG XIN</creatorcontrib><creatorcontrib>XU ZHIHAO</creatorcontrib><creatorcontrib>WU DIWEI</creatorcontrib><creatorcontrib>HE JIAHUI</creatorcontrib><creatorcontrib>DENG HUAPU</creatorcontrib><creatorcontrib>HOU CHENG</creatorcontrib><creatorcontrib>WU XIAORUI</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>YANG FENGFAN</creatorcontrib><creatorcontrib>GAO MUFENG</creatorcontrib><creatorcontrib>HE QI</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>WANG ZONGYAO</creatorcontrib><creatorcontrib>ZHAO ZEYU</creatorcontrib><creatorcontrib>WANG YONGJIE</creatorcontrib><creatorcontrib>DU JUN</creatorcontrib><title>Oil-immersed transformer fault diagnosis method based on multi-source data fusion</title><description>The invention belongs to the technical field of transformer fault diagnosis, and relates to an oil-immersed transformer fault diagnosis method based on multi-source data fusion, which comprises the following steps of: selecting five gases as indexes for analyzing gas dissolved in transformer oil, a winding direct-current resistance unbalance coefficient, a winding absorption ratio, a polarization index, an iron core grounding current and a micro-water content; constructing a multi-source information fusion index; the multi-source information fusion indexes and the corresponding transformer fault types form a data set, and the data set is input into an SVM network for training; kernel function parameters and penalty parameters are optimized by adopting a zebra algorithm, and the established ZOA-SVM transformer fault diagnosis model is used for transformer fault diagnosis. According to the method, various state information amounts are analyzed through multi-source information fusion of the transformer, the SVM</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHvxIOof1gfkEMTWqxTFkyJ4L2uz0YUkW7LJ_63gAzwNw8yyud84GI6RspKDkjGplzwreKyhgGN8JVFWiFTe4uCJ31ESxDmzUal5JHBYEHxVlrRuFh6D0ubHVbM9nx79xdAkA-mEIyUqQ3-1tusO7d62x90_zwcK-zgX</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>LUO LANG</creator><creator>PAN XIAOLU</creator><creator>LYU JIAWEI</creator><creator>TANG WEI</creator><creator>DING GUILI</creator><creator>ZHANG ZIXI</creator><creator>KANG BING</creator><creator>TONG XIN</creator><creator>XU ZHIHAO</creator><creator>WU DIWEI</creator><creator>HE JIAHUI</creator><creator>DENG HUAPU</creator><creator>HOU CHENG</creator><creator>WU XIAORUI</creator><creator>LI JIA</creator><creator>YANG FENGFAN</creator><creator>GAO MUFENG</creator><creator>HE QI</creator><creator>ZHANG LU</creator><creator>WANG ZONGYAO</creator><creator>ZHAO ZEYU</creator><creator>WANG YONGJIE</creator><creator>DU JUN</creator><scope>EVB</scope></search><sort><creationdate>20240329</creationdate><title>Oil-immersed transformer fault diagnosis method based on multi-source data fusion</title><author>LUO LANG ; PAN XIAOLU ; LYU JIAWEI ; TANG WEI ; DING GUILI ; ZHANG ZIXI ; KANG BING ; TONG XIN ; XU ZHIHAO ; WU DIWEI ; HE JIAHUI ; DENG HUAPU ; HOU CHENG ; WU XIAORUI ; LI JIA ; YANG FENGFAN ; GAO MUFENG ; HE QI ; ZHANG LU ; WANG ZONGYAO ; ZHAO ZEYU ; WANG YONGJIE ; DU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117786516A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO LANG</creatorcontrib><creatorcontrib>PAN XIAOLU</creatorcontrib><creatorcontrib>LYU JIAWEI</creatorcontrib><creatorcontrib>TANG WEI</creatorcontrib><creatorcontrib>DING GUILI</creatorcontrib><creatorcontrib>ZHANG ZIXI</creatorcontrib><creatorcontrib>KANG BING</creatorcontrib><creatorcontrib>TONG XIN</creatorcontrib><creatorcontrib>XU ZHIHAO</creatorcontrib><creatorcontrib>WU DIWEI</creatorcontrib><creatorcontrib>HE JIAHUI</creatorcontrib><creatorcontrib>DENG HUAPU</creatorcontrib><creatorcontrib>HOU CHENG</creatorcontrib><creatorcontrib>WU XIAORUI</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>YANG FENGFAN</creatorcontrib><creatorcontrib>GAO MUFENG</creatorcontrib><creatorcontrib>HE QI</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>WANG ZONGYAO</creatorcontrib><creatorcontrib>ZHAO ZEYU</creatorcontrib><creatorcontrib>WANG YONGJIE</creatorcontrib><creatorcontrib>DU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO LANG</au><au>PAN XIAOLU</au><au>LYU JIAWEI</au><au>TANG WEI</au><au>DING GUILI</au><au>ZHANG ZIXI</au><au>KANG BING</au><au>TONG XIN</au><au>XU ZHIHAO</au><au>WU DIWEI</au><au>HE JIAHUI</au><au>DENG HUAPU</au><au>HOU CHENG</au><au>WU XIAORUI</au><au>LI JIA</au><au>YANG FENGFAN</au><au>GAO MUFENG</au><au>HE QI</au><au>ZHANG LU</au><au>WANG ZONGYAO</au><au>ZHAO ZEYU</au><au>WANG YONGJIE</au><au>DU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Oil-immersed transformer fault diagnosis method based on multi-source data fusion</title><date>2024-03-29</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of transformer fault diagnosis, and relates to an oil-immersed transformer fault diagnosis method based on multi-source data fusion, which comprises the following steps of: selecting five gases as indexes for analyzing gas dissolved in transformer oil, a winding direct-current resistance unbalance coefficient, a winding absorption ratio, a polarization index, an iron core grounding current and a micro-water content; constructing a multi-source information fusion index; the multi-source information fusion indexes and the corresponding transformer fault types form a data set, and the data set is input into an SVM network for training; kernel function parameters and penalty parameters are optimized by adopting a zebra algorithm, and the established ZOA-SVM transformer fault diagnosis model is used for transformer fault diagnosis. According to the method, various state information amounts are analyzed through multi-source information fusion of the transformer, the SVM</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117786516A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Oil-immersed transformer fault diagnosis method based on multi-source data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20LANG&rft.date=2024-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117786516A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true