Multi-modal emotion recognition method and device
The invention relates to the technical field of emotion recognition, in particular to a multi-mode emotion recognition method and device, and the method comprises the steps: carrying out the pre-segmentation processing of long-sequence audio and video information, inputting audio and video feature c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN XUEQIN SHI CHANGWEN |
description | The invention relates to the technical field of emotion recognition, in particular to a multi-mode emotion recognition method and device, and the method comprises the steps: carrying out the pre-segmentation processing of long-sequence audio and video information, inputting audio and video feature codes, and extracting audio and video segment-level feature sequences; connecting the audio and video segment-level feature sequences and then mapping the audio and video segment-level feature sequences through a full connection layer to obtain a segment-level emotion similarity feature sequence; using each segment-level emotion similarity feature sequence query element and each audio and video segment-level feature sequence as a key element and a value element, and outputting an audio and video segment-level emotion weighted feature sequence through a multi-head attention mechanism; respectively calculating an audio and video weighted center vector and a center vector of emotion similarity information by utilizing |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117763446A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117763446A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117763446A3</originalsourceid><addsrcrecordid>eNrjZDD0Lc0pydTNzU9JzFFIzc0vyczPUyhKTc5Pz8sEs3NTSzLyUxQS81IUUlLLMpNTeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaG5uZmxiYmZozExagCiASvL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal emotion recognition method and device</title><source>esp@cenet</source><creator>CHEN XUEQIN ; SHI CHANGWEN</creator><creatorcontrib>CHEN XUEQIN ; SHI CHANGWEN</creatorcontrib><description>The invention relates to the technical field of emotion recognition, in particular to a multi-mode emotion recognition method and device, and the method comprises the steps: carrying out the pre-segmentation processing of long-sequence audio and video information, inputting audio and video feature codes, and extracting audio and video segment-level feature sequences; connecting the audio and video segment-level feature sequences and then mapping the audio and video segment-level feature sequences through a full connection layer to obtain a segment-level emotion similarity feature sequence; using each segment-level emotion similarity feature sequence query element and each audio and video segment-level feature sequence as a key element and a value element, and outputting an audio and video segment-level emotion weighted feature sequence through a multi-head attention mechanism; respectively calculating an audio and video weighted center vector and a center vector of emotion similarity information by utilizing</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240326&DB=EPODOC&CC=CN&NR=117763446A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240326&DB=EPODOC&CC=CN&NR=117763446A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN XUEQIN</creatorcontrib><creatorcontrib>SHI CHANGWEN</creatorcontrib><title>Multi-modal emotion recognition method and device</title><description>The invention relates to the technical field of emotion recognition, in particular to a multi-mode emotion recognition method and device, and the method comprises the steps: carrying out the pre-segmentation processing of long-sequence audio and video information, inputting audio and video feature codes, and extracting audio and video segment-level feature sequences; connecting the audio and video segment-level feature sequences and then mapping the audio and video segment-level feature sequences through a full connection layer to obtain a segment-level emotion similarity feature sequence; using each segment-level emotion similarity feature sequence query element and each audio and video segment-level feature sequence as a key element and a value element, and outputting an audio and video segment-level emotion weighted feature sequence through a multi-head attention mechanism; respectively calculating an audio and video weighted center vector and a center vector of emotion similarity information by utilizing</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD0Lc0pydTNzU9JzFFIzc0vyczPUyhKTc5Pz8sEs3NTSzLyUxQS81IUUlLLMpNTeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaG5uZmxiYmZozExagCiASvL</recordid><startdate>20240326</startdate><enddate>20240326</enddate><creator>CHEN XUEQIN</creator><creator>SHI CHANGWEN</creator><scope>EVB</scope></search><sort><creationdate>20240326</creationdate><title>Multi-modal emotion recognition method and device</title><author>CHEN XUEQIN ; SHI CHANGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117763446A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN XUEQIN</creatorcontrib><creatorcontrib>SHI CHANGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN XUEQIN</au><au>SHI CHANGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal emotion recognition method and device</title><date>2024-03-26</date><risdate>2024</risdate><abstract>The invention relates to the technical field of emotion recognition, in particular to a multi-mode emotion recognition method and device, and the method comprises the steps: carrying out the pre-segmentation processing of long-sequence audio and video information, inputting audio and video feature codes, and extracting audio and video segment-level feature sequences; connecting the audio and video segment-level feature sequences and then mapping the audio and video segment-level feature sequences through a full connection layer to obtain a segment-level emotion similarity feature sequence; using each segment-level emotion similarity feature sequence query element and each audio and video segment-level feature sequence as a key element and a value element, and outputting an audio and video segment-level emotion weighted feature sequence through a multi-head attention mechanism; respectively calculating an audio and video weighted center vector and a center vector of emotion similarity information by utilizing</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117763446A |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Multi-modal emotion recognition method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20XUEQIN&rft.date=2024-03-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117763446A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |