Knowledge-driven text generation-based speech recognition field adaptive method and system

The embodiment of the invention provides a voice recognition field adaptive method and system based on knowledge-driven text generation. The method comprises the following steps: inputting target domain knowledge into a knowledge description framework for filling, and guiding a large language model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU SEN, YANG BAOCHEN, YU KAI, GUO YIWEI, ZHANG XIZHUO, LIANG ZHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU SEN
YANG BAOCHEN
YU KAI
GUO YIWEI
ZHANG XIZHUO
LIANG ZHENG
description The embodiment of the invention provides a voice recognition field adaptive method and system based on knowledge-driven text generation. The method comprises the following steps: inputting target domain knowledge into a knowledge description framework for filling, and guiding a large language model to generate a target domain text conforming to the target domain knowledge; inputting the target domain text into a text-to-speech model to generate first training data; performing domain-adaptive first optimization training on the speech recognition model by using the first training data, and outputting a target audio hypothesis of the first training data by using the trained speech recognition model; inputting the target audio hypothesis into a large language model for knowledge-driven text generation iteration to obtain second training data; and performing domain-adaptive second optimization training on the speech recognition model by using the second training data to obtain a domain-adaptive speech recognition
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117746848A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117746848A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117746848A3</originalsourceid><addsrcrecordid>eNrjZIjyzssvz0lNSU_VTSnKLEvNUyhJrShRSE_NSy1KLMnMz9NNSixOTVEoLkhNTc5QKEpNzk_PywRJKKRlpuakKCSmJBaUADUq5KaWZOQD-XlAxZXFJam5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRloSUm8s5-hobm5iZmFiYWjMTFqAHikO7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Knowledge-driven text generation-based speech recognition field adaptive method and system</title><source>esp@cenet</source><creator>LIU SEN ; YANG BAOCHEN ; YU KAI ; GUO YIWEI ; ZHANG XIZHUO ; LIANG ZHENG</creator><creatorcontrib>LIU SEN ; YANG BAOCHEN ; YU KAI ; GUO YIWEI ; ZHANG XIZHUO ; LIANG ZHENG</creatorcontrib><description>The embodiment of the invention provides a voice recognition field adaptive method and system based on knowledge-driven text generation. The method comprises the following steps: inputting target domain knowledge into a knowledge description framework for filling, and guiding a large language model to generate a target domain text conforming to the target domain knowledge; inputting the target domain text into a text-to-speech model to generate first training data; performing domain-adaptive first optimization training on the speech recognition model by using the first training data, and outputting a target audio hypothesis of the first training data by using the trained speech recognition model; inputting the target audio hypothesis into a large language model for knowledge-driven text generation iteration to obtain second training data; and performing domain-adaptive second optimization training on the speech recognition model by using the second training data to obtain a domain-adaptive speech recognition</description><language>chi ; eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240322&amp;DB=EPODOC&amp;CC=CN&amp;NR=117746848A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240322&amp;DB=EPODOC&amp;CC=CN&amp;NR=117746848A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU SEN</creatorcontrib><creatorcontrib>YANG BAOCHEN</creatorcontrib><creatorcontrib>YU KAI</creatorcontrib><creatorcontrib>GUO YIWEI</creatorcontrib><creatorcontrib>ZHANG XIZHUO</creatorcontrib><creatorcontrib>LIANG ZHENG</creatorcontrib><title>Knowledge-driven text generation-based speech recognition field adaptive method and system</title><description>The embodiment of the invention provides a voice recognition field adaptive method and system based on knowledge-driven text generation. The method comprises the following steps: inputting target domain knowledge into a knowledge description framework for filling, and guiding a large language model to generate a target domain text conforming to the target domain knowledge; inputting the target domain text into a text-to-speech model to generate first training data; performing domain-adaptive first optimization training on the speech recognition model by using the first training data, and outputting a target audio hypothesis of the first training data by using the trained speech recognition model; inputting the target audio hypothesis into a large language model for knowledge-driven text generation iteration to obtain second training data; and performing domain-adaptive second optimization training on the speech recognition model by using the second training data to obtain a domain-adaptive speech recognition</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjyzssvz0lNSU_VTSnKLEvNUyhJrShRSE_NSy1KLMnMz9NNSixOTVEoLkhNTc5QKEpNzk_PywRJKKRlpuakKCSmJBaUADUq5KaWZOQD-XlAxZXFJam5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRloSUm8s5-hobm5iZmFiYWjMTFqAHikO7M</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>LIU SEN</creator><creator>YANG BAOCHEN</creator><creator>YU KAI</creator><creator>GUO YIWEI</creator><creator>ZHANG XIZHUO</creator><creator>LIANG ZHENG</creator><scope>EVB</scope></search><sort><creationdate>20240322</creationdate><title>Knowledge-driven text generation-based speech recognition field adaptive method and system</title><author>LIU SEN ; YANG BAOCHEN ; YU KAI ; GUO YIWEI ; ZHANG XIZHUO ; LIANG ZHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117746848A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU SEN</creatorcontrib><creatorcontrib>YANG BAOCHEN</creatorcontrib><creatorcontrib>YU KAI</creatorcontrib><creatorcontrib>GUO YIWEI</creatorcontrib><creatorcontrib>ZHANG XIZHUO</creatorcontrib><creatorcontrib>LIANG ZHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU SEN</au><au>YANG BAOCHEN</au><au>YU KAI</au><au>GUO YIWEI</au><au>ZHANG XIZHUO</au><au>LIANG ZHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Knowledge-driven text generation-based speech recognition field adaptive method and system</title><date>2024-03-22</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a voice recognition field adaptive method and system based on knowledge-driven text generation. The method comprises the following steps: inputting target domain knowledge into a knowledge description framework for filling, and guiding a large language model to generate a target domain text conforming to the target domain knowledge; inputting the target domain text into a text-to-speech model to generate first training data; performing domain-adaptive first optimization training on the speech recognition model by using the first training data, and outputting a target audio hypothesis of the first training data by using the trained speech recognition model; inputting the target audio hypothesis into a large language model for knowledge-driven text generation iteration to obtain second training data; and performing domain-adaptive second optimization training on the speech recognition model by using the second training data to obtain a domain-adaptive speech recognition</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117746848A
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Knowledge-driven text generation-based speech recognition field adaptive method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20SEN&rft.date=2024-03-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117746848A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true