Attack detection method and device for heterogeneous network data

The invention relates to an attack detection method and device oriented to heterogeneous network data. The method comprises the following steps: acquiring a pre-trained network flow classification model, a real-time source network flow data sample and a real-time target network flow data sample; the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZOU LONGYIN, CAO DEQI, SUN SIYANG, WANG YI, DING ZHAOYUN, LIU SHUANGWEI, XIE GUANHUA, ZHANG HANG, QIN JIANBO, CAO GUANGLEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZOU LONGYIN
CAO DEQI
SUN SIYANG
WANG YI
DING ZHAOYUN
LIU SHUANGWEI
XIE GUANHUA
ZHANG HANG
QIN JIANBO
CAO GUANGLEI
description The invention relates to an attack detection method and device oriented to heterogeneous network data. The method comprises the following steps: acquiring a pre-trained network flow classification model, a real-time source network flow data sample and a real-time target network flow data sample; the network flow classification model comprises a source network flow classification model and a target network flow classification model based on an online learning model; respectively performing online prediction on the source network flow data sample and the target network flow data sample through a network flow classification model to obtain a source prediction result of the source network flow data sample and a target prediction result of the target network flow data sample; and according to the source prediction result and the target prediction result, respectively carrying out concept drift detection on the source network flow data sample and the target network flow data sample, and updating the network flow cl
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117714209A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117714209A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117714209A3</originalsourceid><addsrcrecordid>eNrjZHB0LClJTM5WSEktSU0uyczPU8hNLcnIT1FIzEsBCpZlJqcqpOUXKWQA5Yvy01PzUvNLixXyUkvK84uAuhJLEnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWIyUFNJvLOfoaG5uaGJkYGlozExagAN8THL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Attack detection method and device for heterogeneous network data</title><source>esp@cenet</source><creator>ZOU LONGYIN ; CAO DEQI ; SUN SIYANG ; WANG YI ; DING ZHAOYUN ; LIU SHUANGWEI ; XIE GUANHUA ; ZHANG HANG ; QIN JIANBO ; CAO GUANGLEI</creator><creatorcontrib>ZOU LONGYIN ; CAO DEQI ; SUN SIYANG ; WANG YI ; DING ZHAOYUN ; LIU SHUANGWEI ; XIE GUANHUA ; ZHANG HANG ; QIN JIANBO ; CAO GUANGLEI</creatorcontrib><description>The invention relates to an attack detection method and device oriented to heterogeneous network data. The method comprises the following steps: acquiring a pre-trained network flow classification model, a real-time source network flow data sample and a real-time target network flow data sample; the network flow classification model comprises a source network flow classification model and a target network flow classification model based on an online learning model; respectively performing online prediction on the source network flow data sample and the target network flow data sample through a network flow classification model to obtain a source prediction result of the source network flow data sample and a target prediction result of the target network flow data sample; and according to the source prediction result and the target prediction result, respectively carrying out concept drift detection on the source network flow data sample and the target network flow data sample, and updating the network flow cl</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240315&amp;DB=EPODOC&amp;CC=CN&amp;NR=117714209A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240315&amp;DB=EPODOC&amp;CC=CN&amp;NR=117714209A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZOU LONGYIN</creatorcontrib><creatorcontrib>CAO DEQI</creatorcontrib><creatorcontrib>SUN SIYANG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>DING ZHAOYUN</creatorcontrib><creatorcontrib>LIU SHUANGWEI</creatorcontrib><creatorcontrib>XIE GUANHUA</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>QIN JIANBO</creatorcontrib><creatorcontrib>CAO GUANGLEI</creatorcontrib><title>Attack detection method and device for heterogeneous network data</title><description>The invention relates to an attack detection method and device oriented to heterogeneous network data. The method comprises the following steps: acquiring a pre-trained network flow classification model, a real-time source network flow data sample and a real-time target network flow data sample; the network flow classification model comprises a source network flow classification model and a target network flow classification model based on an online learning model; respectively performing online prediction on the source network flow data sample and the target network flow data sample through a network flow classification model to obtain a source prediction result of the source network flow data sample and a target prediction result of the target network flow data sample; and according to the source prediction result and the target prediction result, respectively carrying out concept drift detection on the source network flow data sample and the target network flow data sample, and updating the network flow cl</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0LClJTM5WSEktSU0uyczPU8hNLcnIT1FIzEsBCpZlJqcqpOUXKWQA5Yvy01PzUvNLixXyUkvK84uAuhJLEnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWIyUFNJvLOfoaG5uaGJkYGlozExagAN8THL</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>ZOU LONGYIN</creator><creator>CAO DEQI</creator><creator>SUN SIYANG</creator><creator>WANG YI</creator><creator>DING ZHAOYUN</creator><creator>LIU SHUANGWEI</creator><creator>XIE GUANHUA</creator><creator>ZHANG HANG</creator><creator>QIN JIANBO</creator><creator>CAO GUANGLEI</creator><scope>EVB</scope></search><sort><creationdate>20240315</creationdate><title>Attack detection method and device for heterogeneous network data</title><author>ZOU LONGYIN ; CAO DEQI ; SUN SIYANG ; WANG YI ; DING ZHAOYUN ; LIU SHUANGWEI ; XIE GUANHUA ; ZHANG HANG ; QIN JIANBO ; CAO GUANGLEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117714209A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>ZOU LONGYIN</creatorcontrib><creatorcontrib>CAO DEQI</creatorcontrib><creatorcontrib>SUN SIYANG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>DING ZHAOYUN</creatorcontrib><creatorcontrib>LIU SHUANGWEI</creatorcontrib><creatorcontrib>XIE GUANHUA</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>QIN JIANBO</creatorcontrib><creatorcontrib>CAO GUANGLEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZOU LONGYIN</au><au>CAO DEQI</au><au>SUN SIYANG</au><au>WANG YI</au><au>DING ZHAOYUN</au><au>LIU SHUANGWEI</au><au>XIE GUANHUA</au><au>ZHANG HANG</au><au>QIN JIANBO</au><au>CAO GUANGLEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Attack detection method and device for heterogeneous network data</title><date>2024-03-15</date><risdate>2024</risdate><abstract>The invention relates to an attack detection method and device oriented to heterogeneous network data. The method comprises the following steps: acquiring a pre-trained network flow classification model, a real-time source network flow data sample and a real-time target network flow data sample; the network flow classification model comprises a source network flow classification model and a target network flow classification model based on an online learning model; respectively performing online prediction on the source network flow data sample and the target network flow data sample through a network flow classification model to obtain a source prediction result of the source network flow data sample and a target prediction result of the target network flow data sample; and according to the source prediction result and the target prediction result, respectively carrying out concept drift detection on the source network flow data sample and the target network flow data sample, and updating the network flow cl</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117714209A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Attack detection method and device for heterogeneous network data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZOU%20LONGYIN&rft.date=2024-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117714209A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true