Electric power heterogeneous knowledge fusion method and device

The invention relates to a power heterogeneous knowledge fusion method. The method comprises the following steps: acquiring a first triple with an entity relationship from ontology layers of at least two knowledge maps; the language model classifies entity relationships in the first triple into syno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FANG XIAOLING, FANG ZHIJIAN, CAI YUXIANG, GAO XIAOXIN, LIU LU, JIANG XIN, FAN WEILIN, NI WENSHU, DONG YANXU, XIAO QIMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FANG XIAOLING
FANG ZHIJIAN
CAI YUXIANG
GAO XIAOXIN
LIU LU
JIANG XIN
FAN WEILIN
NI WENSHU
DONG YANXU
XIAO QIMIN
description The invention relates to a power heterogeneous knowledge fusion method. The method comprises the following steps: acquiring a first triple with an entity relationship from ontology layers of at least two knowledge maps; the language model classifies entity relationships in the first triple into synonymous relationships and inclusion relationships according to relationship aggregation prompts; combining the entity relationships belonging to the synonymous relationship; obtaining a second triad with entity attributes or relation attributes from the ontology layers of at least two knowledge maps, wherein the second triad is used for storing entity attributes or relation attributes; the language model classifies attributes in the second triple into synonymous attributes and non-synonymous attributes according to attribute aggregation prompts; combining the entity attributes or relation attributes belonging to synonymous attributes; obtaining entities from instance layers of at least two knowledge maps, and dividi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117708345A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117708345A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117708345A3</originalsourceid><addsrcrecordid>eNrjZLB3zUlNLinKTFYoyC9PLVLISC1JLcpPT81LzS8tVsjOyy_PSU1JT1VIKy3OzM9TyE0tychPUUjMS1FISS3LTE7lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUCjSuKd_QwNzc0NLIxNTB2NiVEDAMuQMVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric power heterogeneous knowledge fusion method and device</title><source>esp@cenet</source><creator>FANG XIAOLING ; FANG ZHIJIAN ; CAI YUXIANG ; GAO XIAOXIN ; LIU LU ; JIANG XIN ; FAN WEILIN ; NI WENSHU ; DONG YANXU ; XIAO QIMIN</creator><creatorcontrib>FANG XIAOLING ; FANG ZHIJIAN ; CAI YUXIANG ; GAO XIAOXIN ; LIU LU ; JIANG XIN ; FAN WEILIN ; NI WENSHU ; DONG YANXU ; XIAO QIMIN</creatorcontrib><description>The invention relates to a power heterogeneous knowledge fusion method. The method comprises the following steps: acquiring a first triple with an entity relationship from ontology layers of at least two knowledge maps; the language model classifies entity relationships in the first triple into synonymous relationships and inclusion relationships according to relationship aggregation prompts; combining the entity relationships belonging to the synonymous relationship; obtaining a second triad with entity attributes or relation attributes from the ontology layers of at least two knowledge maps, wherein the second triad is used for storing entity attributes or relation attributes; the language model classifies attributes in the second triple into synonymous attributes and non-synonymous attributes according to attribute aggregation prompts; combining the entity attributes or relation attributes belonging to synonymous attributes; obtaining entities from instance layers of at least two knowledge maps, and dividi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240315&amp;DB=EPODOC&amp;CC=CN&amp;NR=117708345A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240315&amp;DB=EPODOC&amp;CC=CN&amp;NR=117708345A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FANG XIAOLING</creatorcontrib><creatorcontrib>FANG ZHIJIAN</creatorcontrib><creatorcontrib>CAI YUXIANG</creatorcontrib><creatorcontrib>GAO XIAOXIN</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>FAN WEILIN</creatorcontrib><creatorcontrib>NI WENSHU</creatorcontrib><creatorcontrib>DONG YANXU</creatorcontrib><creatorcontrib>XIAO QIMIN</creatorcontrib><title>Electric power heterogeneous knowledge fusion method and device</title><description>The invention relates to a power heterogeneous knowledge fusion method. The method comprises the following steps: acquiring a first triple with an entity relationship from ontology layers of at least two knowledge maps; the language model classifies entity relationships in the first triple into synonymous relationships and inclusion relationships according to relationship aggregation prompts; combining the entity relationships belonging to the synonymous relationship; obtaining a second triad with entity attributes or relation attributes from the ontology layers of at least two knowledge maps, wherein the second triad is used for storing entity attributes or relation attributes; the language model classifies attributes in the second triple into synonymous attributes and non-synonymous attributes according to attribute aggregation prompts; combining the entity attributes or relation attributes belonging to synonymous attributes; obtaining entities from instance layers of at least two knowledge maps, and dividi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3zUlNLinKTFYoyC9PLVLISC1JLcpPT81LzS8tVsjOyy_PSU1JT1VIKy3OzM9TyE0tychPUUjMS1FISS3LTE7lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUCjSuKd_QwNzc0NLIxNTB2NiVEDAMuQMVs</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>FANG XIAOLING</creator><creator>FANG ZHIJIAN</creator><creator>CAI YUXIANG</creator><creator>GAO XIAOXIN</creator><creator>LIU LU</creator><creator>JIANG XIN</creator><creator>FAN WEILIN</creator><creator>NI WENSHU</creator><creator>DONG YANXU</creator><creator>XIAO QIMIN</creator><scope>EVB</scope></search><sort><creationdate>20240315</creationdate><title>Electric power heterogeneous knowledge fusion method and device</title><author>FANG XIAOLING ; FANG ZHIJIAN ; CAI YUXIANG ; GAO XIAOXIN ; LIU LU ; JIANG XIN ; FAN WEILIN ; NI WENSHU ; DONG YANXU ; XIAO QIMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117708345A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FANG XIAOLING</creatorcontrib><creatorcontrib>FANG ZHIJIAN</creatorcontrib><creatorcontrib>CAI YUXIANG</creatorcontrib><creatorcontrib>GAO XIAOXIN</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>FAN WEILIN</creatorcontrib><creatorcontrib>NI WENSHU</creatorcontrib><creatorcontrib>DONG YANXU</creatorcontrib><creatorcontrib>XIAO QIMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FANG XIAOLING</au><au>FANG ZHIJIAN</au><au>CAI YUXIANG</au><au>GAO XIAOXIN</au><au>LIU LU</au><au>JIANG XIN</au><au>FAN WEILIN</au><au>NI WENSHU</au><au>DONG YANXU</au><au>XIAO QIMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric power heterogeneous knowledge fusion method and device</title><date>2024-03-15</date><risdate>2024</risdate><abstract>The invention relates to a power heterogeneous knowledge fusion method. The method comprises the following steps: acquiring a first triple with an entity relationship from ontology layers of at least two knowledge maps; the language model classifies entity relationships in the first triple into synonymous relationships and inclusion relationships according to relationship aggregation prompts; combining the entity relationships belonging to the synonymous relationship; obtaining a second triad with entity attributes or relation attributes from the ontology layers of at least two knowledge maps, wherein the second triad is used for storing entity attributes or relation attributes; the language model classifies attributes in the second triple into synonymous attributes and non-synonymous attributes according to attribute aggregation prompts; combining the entity attributes or relation attributes belonging to synonymous attributes; obtaining entities from instance layers of at least two knowledge maps, and dividi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117708345A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Electric power heterogeneous knowledge fusion method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FANG%20XIAOLING&rft.date=2024-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117708345A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true