Multi-party joint vector knowledge base retrieval method and system for privacy protection
The invention provides a privacy-protected multi-party joint vector knowledge base retrieval method and system, and the method comprises the steps: multi-party text corpora construct indexes and respectively upload the indexes to a trusted third party, the trusted third party distributes random prot...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN XIN GAO JINCHAO XIAO QIANYU LI CHUANG |
description | The invention provides a privacy-protected multi-party joint vector knowledge base retrieval method and system, and the method comprises the steps: multi-party text corpora construct indexes and respectively upload the indexes to a trusted third party, the trusted third party distributes random protection secret parameters, and each party generates auxiliary data in combination with local random parameters; each party obtains an embedded vector of the corpus, and data subjected to dimension reduction processing and random homogeneous transformation and auxiliary data are uploaded to a joint vector database server side; a user carries out corpus embedding on a query request text and then carries out dimensionality reduction and random homogeneous transformation to generate a vector to be retrieved; performing similarity retrieval after the vector to be retrieved and auxiliary data are operated in the joint vector database, and returning an index result; and after the vector similarity retrieval is completed, q |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117708263A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117708263A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117708263A3</originalsourceid><addsrcrecordid>eNqNzDEOgkAQRmEaC6PeYTwAiUgitoZobLSysiEj_OjqsrPZHTHcXgoPYPWaL2-aXE9vqyb1HHSgpxin1KNWCfRy8rFo7qAbR1CABoOeLXXQhzTErqE4REVH7ch9MD3Xw1jRcWDEzZNJyzZi8essWR72l_KYwkuF6LmGg1blOcuKYrVdb_Jd_o_5AobTO9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-party joint vector knowledge base retrieval method and system for privacy protection</title><source>esp@cenet</source><creator>CHEN XIN ; GAO JINCHAO ; XIAO QIANYU ; LI CHUANG</creator><creatorcontrib>CHEN XIN ; GAO JINCHAO ; XIAO QIANYU ; LI CHUANG</creatorcontrib><description>The invention provides a privacy-protected multi-party joint vector knowledge base retrieval method and system, and the method comprises the steps: multi-party text corpora construct indexes and respectively upload the indexes to a trusted third party, the trusted third party distributes random protection secret parameters, and each party generates auxiliary data in combination with local random parameters; each party obtains an embedded vector of the corpus, and data subjected to dimension reduction processing and random homogeneous transformation and auxiliary data are uploaded to a joint vector database server side; a user carries out corpus embedding on a query request text and then carries out dimensionality reduction and random homogeneous transformation to generate a vector to be retrieved; performing similarity retrieval after the vector to be retrieved and auxiliary data are operated in the joint vector database, and returning an index result; and after the vector similarity retrieval is completed, q</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240315&DB=EPODOC&CC=CN&NR=117708263A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240315&DB=EPODOC&CC=CN&NR=117708263A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>GAO JINCHAO</creatorcontrib><creatorcontrib>XIAO QIANYU</creatorcontrib><creatorcontrib>LI CHUANG</creatorcontrib><title>Multi-party joint vector knowledge base retrieval method and system for privacy protection</title><description>The invention provides a privacy-protected multi-party joint vector knowledge base retrieval method and system, and the method comprises the steps: multi-party text corpora construct indexes and respectively upload the indexes to a trusted third party, the trusted third party distributes random protection secret parameters, and each party generates auxiliary data in combination with local random parameters; each party obtains an embedded vector of the corpus, and data subjected to dimension reduction processing and random homogeneous transformation and auxiliary data are uploaded to a joint vector database server side; a user carries out corpus embedding on a query request text and then carries out dimensionality reduction and random homogeneous transformation to generate a vector to be retrieved; performing similarity retrieval after the vector to be retrieved and auxiliary data are operated in the joint vector database, and returning an index result; and after the vector similarity retrieval is completed, q</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEOgkAQRmEaC6PeYTwAiUgitoZobLSysiEj_OjqsrPZHTHcXgoPYPWaL2-aXE9vqyb1HHSgpxin1KNWCfRy8rFo7qAbR1CABoOeLXXQhzTErqE4REVH7ch9MD3Xw1jRcWDEzZNJyzZi8essWR72l_KYwkuF6LmGg1blOcuKYrVdb_Jd_o_5AobTO9Q</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>CHEN XIN</creator><creator>GAO JINCHAO</creator><creator>XIAO QIANYU</creator><creator>LI CHUANG</creator><scope>EVB</scope></search><sort><creationdate>20240315</creationdate><title>Multi-party joint vector knowledge base retrieval method and system for privacy protection</title><author>CHEN XIN ; GAO JINCHAO ; XIAO QIANYU ; LI CHUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117708263A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>GAO JINCHAO</creatorcontrib><creatorcontrib>XIAO QIANYU</creatorcontrib><creatorcontrib>LI CHUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN XIN</au><au>GAO JINCHAO</au><au>XIAO QIANYU</au><au>LI CHUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-party joint vector knowledge base retrieval method and system for privacy protection</title><date>2024-03-15</date><risdate>2024</risdate><abstract>The invention provides a privacy-protected multi-party joint vector knowledge base retrieval method and system, and the method comprises the steps: multi-party text corpora construct indexes and respectively upload the indexes to a trusted third party, the trusted third party distributes random protection secret parameters, and each party generates auxiliary data in combination with local random parameters; each party obtains an embedded vector of the corpus, and data subjected to dimension reduction processing and random homogeneous transformation and auxiliary data are uploaded to a joint vector database server side; a user carries out corpus embedding on a query request text and then carries out dimensionality reduction and random homogeneous transformation to generate a vector to be retrieved; performing similarity retrieval after the vector to be retrieved and auxiliary data are operated in the joint vector database, and returning an index result; and after the vector similarity retrieval is completed, q</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117708263A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-party joint vector knowledge base retrieval method and system for privacy protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20XIN&rft.date=2024-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117708263A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |