Retinal vessel segmentation method based on structure self-adaption context sensitivity

The invention requests to protect a retinal vessel segmentation method based on structure self-adaption and context sensitivity. The method comprises the following steps: firstly, carrying out preprocessing such as graying, normalization, contrast-limited adaptive histogram equalization, gamma corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUI MEICHAO, ZHAO KUNCHI, SHANG JINGKAI, XIE YING, SHI YAOBIN, TANG XIANLUN, QIAN XIAODONG, LI BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUI MEICHAO
ZHAO KUNCHI
SHANG JINGKAI
XIE YING
SHI YAOBIN
TANG XIANLUN
QIAN XIAODONG
LI BO
description The invention requests to protect a retinal vessel segmentation method based on structure self-adaption and context sensitivity. The method comprises the following steps: firstly, carrying out preprocessing such as graying, normalization, contrast-limited adaptive histogram equalization, gamma correction and the like on a data set; then, carrying out picture size segmentation on the training set to complete data enhancement; then, constructing a full convolutional neural network architecture composed of a contraction path and an expansion path; and finally, a proposed structure adaptive layer is adopted to replace a convolutional layer to replace common convolution, a proposed hole residual path is introduced into a jumper connection layer, an adaptive feature fusion module is added in a decoder, and a multi-scale depth supervision mechanism is introduced to obtain a structure adaptive context sensitive network. And the test data are input into the network for rapid test to complete image segmentation. Accord
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117689669A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117689669A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117689669A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAUheEuDqK-Q3yADkWIdpSiODmI4FiuyakG0iT03hZ9e4P4AE6H__DNi9sF4gJ5NYEZXjEePYKQuBhUD3lGq-7EsCo3yzAaGQdk5ruSLKWvMzEIXpLfwE7c5OS9LGYdecbqt4tifTxcm1OJFFtwIoMAaZtzVW31rta63m_-MR_qPzs8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Retinal vessel segmentation method based on structure self-adaption context sensitivity</title><source>esp@cenet</source><creator>GUI MEICHAO ; ZHAO KUNCHI ; SHANG JINGKAI ; XIE YING ; SHI YAOBIN ; TANG XIANLUN ; QIAN XIAODONG ; LI BO</creator><creatorcontrib>GUI MEICHAO ; ZHAO KUNCHI ; SHANG JINGKAI ; XIE YING ; SHI YAOBIN ; TANG XIANLUN ; QIAN XIAODONG ; LI BO</creatorcontrib><description>The invention requests to protect a retinal vessel segmentation method based on structure self-adaption and context sensitivity. The method comprises the following steps: firstly, carrying out preprocessing such as graying, normalization, contrast-limited adaptive histogram equalization, gamma correction and the like on a data set; then, carrying out picture size segmentation on the training set to complete data enhancement; then, constructing a full convolutional neural network architecture composed of a contraction path and an expansion path; and finally, a proposed structure adaptive layer is adopted to replace a convolutional layer to replace common convolution, a proposed hole residual path is introduced into a jumper connection layer, an adaptive feature fusion module is added in a decoder, and a multi-scale depth supervision mechanism is introduced to obtain a structure adaptive context sensitive network. And the test data are input into the network for rapid test to complete image segmentation. Accord</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240312&amp;DB=EPODOC&amp;CC=CN&amp;NR=117689669A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240312&amp;DB=EPODOC&amp;CC=CN&amp;NR=117689669A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUI MEICHAO</creatorcontrib><creatorcontrib>ZHAO KUNCHI</creatorcontrib><creatorcontrib>SHANG JINGKAI</creatorcontrib><creatorcontrib>XIE YING</creatorcontrib><creatorcontrib>SHI YAOBIN</creatorcontrib><creatorcontrib>TANG XIANLUN</creatorcontrib><creatorcontrib>QIAN XIAODONG</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><title>Retinal vessel segmentation method based on structure self-adaption context sensitivity</title><description>The invention requests to protect a retinal vessel segmentation method based on structure self-adaption and context sensitivity. The method comprises the following steps: firstly, carrying out preprocessing such as graying, normalization, contrast-limited adaptive histogram equalization, gamma correction and the like on a data set; then, carrying out picture size segmentation on the training set to complete data enhancement; then, constructing a full convolutional neural network architecture composed of a contraction path and an expansion path; and finally, a proposed structure adaptive layer is adopted to replace a convolutional layer to replace common convolution, a proposed hole residual path is introduced into a jumper connection layer, an adaptive feature fusion module is added in a decoder, and a multi-scale depth supervision mechanism is introduced to obtain a structure adaptive context sensitive network. And the test data are input into the network for rapid test to complete image segmentation. Accord</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAUheEuDqK-Q3yADkWIdpSiODmI4FiuyakG0iT03hZ9e4P4AE6H__DNi9sF4gJ5NYEZXjEePYKQuBhUD3lGq-7EsCo3yzAaGQdk5ruSLKWvMzEIXpLfwE7c5OS9LGYdecbqt4tifTxcm1OJFFtwIoMAaZtzVW31rta63m_-MR_qPzs8</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>GUI MEICHAO</creator><creator>ZHAO KUNCHI</creator><creator>SHANG JINGKAI</creator><creator>XIE YING</creator><creator>SHI YAOBIN</creator><creator>TANG XIANLUN</creator><creator>QIAN XIAODONG</creator><creator>LI BO</creator><scope>EVB</scope></search><sort><creationdate>20240312</creationdate><title>Retinal vessel segmentation method based on structure self-adaption context sensitivity</title><author>GUI MEICHAO ; ZHAO KUNCHI ; SHANG JINGKAI ; XIE YING ; SHI YAOBIN ; TANG XIANLUN ; QIAN XIAODONG ; LI BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117689669A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUI MEICHAO</creatorcontrib><creatorcontrib>ZHAO KUNCHI</creatorcontrib><creatorcontrib>SHANG JINGKAI</creatorcontrib><creatorcontrib>XIE YING</creatorcontrib><creatorcontrib>SHI YAOBIN</creatorcontrib><creatorcontrib>TANG XIANLUN</creatorcontrib><creatorcontrib>QIAN XIAODONG</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUI MEICHAO</au><au>ZHAO KUNCHI</au><au>SHANG JINGKAI</au><au>XIE YING</au><au>SHI YAOBIN</au><au>TANG XIANLUN</au><au>QIAN XIAODONG</au><au>LI BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Retinal vessel segmentation method based on structure self-adaption context sensitivity</title><date>2024-03-12</date><risdate>2024</risdate><abstract>The invention requests to protect a retinal vessel segmentation method based on structure self-adaption and context sensitivity. The method comprises the following steps: firstly, carrying out preprocessing such as graying, normalization, contrast-limited adaptive histogram equalization, gamma correction and the like on a data set; then, carrying out picture size segmentation on the training set to complete data enhancement; then, constructing a full convolutional neural network architecture composed of a contraction path and an expansion path; and finally, a proposed structure adaptive layer is adopted to replace a convolutional layer to replace common convolution, a proposed hole residual path is introduced into a jumper connection layer, an adaptive feature fusion module is added in a decoder, and a multi-scale depth supervision mechanism is introduced to obtain a structure adaptive context sensitive network. And the test data are input into the network for rapid test to complete image segmentation. Accord</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117689669A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Retinal vessel segmentation method based on structure self-adaption context sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUI%20MEICHAO&rft.date=2024-03-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117689669A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true