MCPC signal waveform optimization method based on multi-target particle swarm optimization

The invention discloses an MCPC signal waveform optimization method based on a multi-target particle swarm algorithm, which can solve the problem of MCPC signal waveform optimization in a wide-area random sparse array detection scene. The method comprises the following steps: constructing a particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHU JIN, LYU FEIFEI, ZUO XIAOSI, DONG LIJIE, ZHANG YINGHAO, LIU WENXU, ZHENG QIAONA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHU JIN
LYU FEIFEI
ZUO XIAOSI
DONG LIJIE
ZHANG YINGHAO
LIU WENXU
ZHENG QIAONA
description The invention discloses an MCPC signal waveform optimization method based on a multi-target particle swarm algorithm, which can solve the problem of MCPC signal waveform optimization in a wide-area random sparse array detection scene. The method comprises the following steps: constructing a particle swarm, and randomly generating the initial position and speed of each particle; calculating fitness function values, namely PMEPR and PSLL, corresponding to each particle in the population; updating a non-inferior solution set; carrying out particle optimal updating; updating the particle speed and position; and judging whether a set number of iterations is reached or not, and outputting a non-inferior solution set after iteration is completed. According to the method, the signal subcarrier weight is optimized under the dual constraints of the signal PMEPR and PSLL by using the multi-target particle swarm algorithm, so that the detection performance of the signal can be improved, and the linear requirement of the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117688310A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117688310A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117688310A3</originalsourceid><addsrcrecordid>eNrjZIjydQ5wVijOTM9LzFEoTyxLTcsvylXILyjJzM2sSizJzM9TyE0tychPUUhKLE5NUQDxS3NKMnVLEovSU0sUChKLSjKTc1IVissT0TTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3MzCwtjQwNHY2LUAABNvTuX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MCPC signal waveform optimization method based on multi-target particle swarm optimization</title><source>esp@cenet</source><creator>ZHU JIN ; LYU FEIFEI ; ZUO XIAOSI ; DONG LIJIE ; ZHANG YINGHAO ; LIU WENXU ; ZHENG QIAONA</creator><creatorcontrib>ZHU JIN ; LYU FEIFEI ; ZUO XIAOSI ; DONG LIJIE ; ZHANG YINGHAO ; LIU WENXU ; ZHENG QIAONA</creatorcontrib><description>The invention discloses an MCPC signal waveform optimization method based on a multi-target particle swarm algorithm, which can solve the problem of MCPC signal waveform optimization in a wide-area random sparse array detection scene. The method comprises the following steps: constructing a particle swarm, and randomly generating the initial position and speed of each particle; calculating fitness function values, namely PMEPR and PSLL, corresponding to each particle in the population; updating a non-inferior solution set; carrying out particle optimal updating; updating the particle speed and position; and judging whether a set number of iterations is reached or not, and outputting a non-inferior solution set after iteration is completed. According to the method, the signal subcarrier weight is optimized under the dual constraints of the signal PMEPR and PSLL by using the multi-target particle swarm algorithm, so that the detection performance of the signal can be improved, and the linear requirement of the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240312&amp;DB=EPODOC&amp;CC=CN&amp;NR=117688310A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240312&amp;DB=EPODOC&amp;CC=CN&amp;NR=117688310A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHU JIN</creatorcontrib><creatorcontrib>LYU FEIFEI</creatorcontrib><creatorcontrib>ZUO XIAOSI</creatorcontrib><creatorcontrib>DONG LIJIE</creatorcontrib><creatorcontrib>ZHANG YINGHAO</creatorcontrib><creatorcontrib>LIU WENXU</creatorcontrib><creatorcontrib>ZHENG QIAONA</creatorcontrib><title>MCPC signal waveform optimization method based on multi-target particle swarm optimization</title><description>The invention discloses an MCPC signal waveform optimization method based on a multi-target particle swarm algorithm, which can solve the problem of MCPC signal waveform optimization in a wide-area random sparse array detection scene. The method comprises the following steps: constructing a particle swarm, and randomly generating the initial position and speed of each particle; calculating fitness function values, namely PMEPR and PSLL, corresponding to each particle in the population; updating a non-inferior solution set; carrying out particle optimal updating; updating the particle speed and position; and judging whether a set number of iterations is reached or not, and outputting a non-inferior solution set after iteration is completed. According to the method, the signal subcarrier weight is optimized under the dual constraints of the signal PMEPR and PSLL by using the multi-target particle swarm algorithm, so that the detection performance of the signal can be improved, and the linear requirement of the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjydQ5wVijOTM9LzFEoTyxLTcsvylXILyjJzM2sSizJzM9TyE0tychPUUhKLE5NUQDxS3NKMnVLEovSU0sUChKLSjKTc1IVissT0TTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3MzCwtjQwNHY2LUAABNvTuX</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>ZHU JIN</creator><creator>LYU FEIFEI</creator><creator>ZUO XIAOSI</creator><creator>DONG LIJIE</creator><creator>ZHANG YINGHAO</creator><creator>LIU WENXU</creator><creator>ZHENG QIAONA</creator><scope>EVB</scope></search><sort><creationdate>20240312</creationdate><title>MCPC signal waveform optimization method based on multi-target particle swarm optimization</title><author>ZHU JIN ; LYU FEIFEI ; ZUO XIAOSI ; DONG LIJIE ; ZHANG YINGHAO ; LIU WENXU ; ZHENG QIAONA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117688310A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHU JIN</creatorcontrib><creatorcontrib>LYU FEIFEI</creatorcontrib><creatorcontrib>ZUO XIAOSI</creatorcontrib><creatorcontrib>DONG LIJIE</creatorcontrib><creatorcontrib>ZHANG YINGHAO</creatorcontrib><creatorcontrib>LIU WENXU</creatorcontrib><creatorcontrib>ZHENG QIAONA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHU JIN</au><au>LYU FEIFEI</au><au>ZUO XIAOSI</au><au>DONG LIJIE</au><au>ZHANG YINGHAO</au><au>LIU WENXU</au><au>ZHENG QIAONA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MCPC signal waveform optimization method based on multi-target particle swarm optimization</title><date>2024-03-12</date><risdate>2024</risdate><abstract>The invention discloses an MCPC signal waveform optimization method based on a multi-target particle swarm algorithm, which can solve the problem of MCPC signal waveform optimization in a wide-area random sparse array detection scene. The method comprises the following steps: constructing a particle swarm, and randomly generating the initial position and speed of each particle; calculating fitness function values, namely PMEPR and PSLL, corresponding to each particle in the population; updating a non-inferior solution set; carrying out particle optimal updating; updating the particle speed and position; and judging whether a set number of iterations is reached or not, and outputting a non-inferior solution set after iteration is completed. According to the method, the signal subcarrier weight is optimized under the dual constraints of the signal PMEPR and PSLL by using the multi-target particle swarm algorithm, so that the detection performance of the signal can be improved, and the linear requirement of the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117688310A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title MCPC signal waveform optimization method based on multi-target particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHU%20JIN&rft.date=2024-03-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117688310A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true