Frequency dispersion curve automatic picking method based on machine learning

The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency disp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO JINGJIE, YIN HANJUN, YANG HELONG, YANG QIYAN, WEI YAJIE, XU CHANGHAO, CAI ZHICHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO JINGJIE
YIN HANJUN
YANG HELONG
YANG QIYAN
WEI YAJIE
XU CHANGHAO
CAI ZHICHENG
description The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing. 本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117665914A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117665914A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117665914A3</originalsourceid><addsrcrecordid>eNqNyrsOAUEUBuBtFIJ3OB5AMcGKUjY2Gir95jjzsxM7F3OReHtbeADV13zT6txGvAqcfEibFBCT8Y6kxDeIS_aWsxEKRp7GPcgi917TjRM0jc-y9MaBBnB0Y5hXkzsPCYufs2rZHq_NaYXgO6TAAofcNReldnW93avNYf3P-QIfxDap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Frequency dispersion curve automatic picking method based on machine learning</title><source>esp@cenet</source><creator>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</creator><creatorcontrib>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</creatorcontrib><description>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing. 本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; ELECTRIC DIGITAL DATA PROCESSING ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240308&amp;DB=EPODOC&amp;CC=CN&amp;NR=117665914A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240308&amp;DB=EPODOC&amp;CC=CN&amp;NR=117665914A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO JINGJIE</creatorcontrib><creatorcontrib>YIN HANJUN</creatorcontrib><creatorcontrib>YANG HELONG</creatorcontrib><creatorcontrib>YANG QIYAN</creatorcontrib><creatorcontrib>WEI YAJIE</creatorcontrib><creatorcontrib>XU CHANGHAO</creatorcontrib><creatorcontrib>CAI ZHICHENG</creatorcontrib><title>Frequency dispersion curve automatic picking method based on machine learning</title><description>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing. 本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrsOAUEUBuBtFIJ3OB5AMcGKUjY2Gir95jjzsxM7F3OReHtbeADV13zT6txGvAqcfEibFBCT8Y6kxDeIS_aWsxEKRp7GPcgi917TjRM0jc-y9MaBBnB0Y5hXkzsPCYufs2rZHq_NaYXgO6TAAofcNReldnW93avNYf3P-QIfxDap</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>CAO JINGJIE</creator><creator>YIN HANJUN</creator><creator>YANG HELONG</creator><creator>YANG QIYAN</creator><creator>WEI YAJIE</creator><creator>XU CHANGHAO</creator><creator>CAI ZHICHENG</creator><scope>EVB</scope></search><sort><creationdate>20240308</creationdate><title>Frequency dispersion curve automatic picking method based on machine learning</title><author>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117665914A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO JINGJIE</creatorcontrib><creatorcontrib>YIN HANJUN</creatorcontrib><creatorcontrib>YANG HELONG</creatorcontrib><creatorcontrib>YANG QIYAN</creatorcontrib><creatorcontrib>WEI YAJIE</creatorcontrib><creatorcontrib>XU CHANGHAO</creatorcontrib><creatorcontrib>CAI ZHICHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO JINGJIE</au><au>YIN HANJUN</au><au>YANG HELONG</au><au>YANG QIYAN</au><au>WEI YAJIE</au><au>XU CHANGHAO</au><au>CAI ZHICHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Frequency dispersion curve automatic picking method based on machine learning</title><date>2024-03-08</date><risdate>2024</risdate><abstract>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing. 本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117665914A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
ELECTRIC DIGITAL DATA PROCESSING
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Frequency dispersion curve automatic picking method based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20JINGJIE&rft.date=2024-03-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117665914A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true