Frequency dispersion curve automatic picking method based on machine learning
The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency disp...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CAO JINGJIE YIN HANJUN YANG HELONG YANG QIYAN WEI YAJIE XU CHANGHAO CAI ZHICHENG |
description | The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing.
本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117665914A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117665914A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117665914A3</originalsourceid><addsrcrecordid>eNqNyrsOAUEUBuBtFIJ3OB5AMcGKUjY2Gir95jjzsxM7F3OReHtbeADV13zT6txGvAqcfEibFBCT8Y6kxDeIS_aWsxEKRp7GPcgi917TjRM0jc-y9MaBBnB0Y5hXkzsPCYufs2rZHq_NaYXgO6TAAofcNReldnW93avNYf3P-QIfxDap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Frequency dispersion curve automatic picking method based on machine learning</title><source>esp@cenet</source><creator>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</creator><creatorcontrib>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</creatorcontrib><description>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing.
本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; ELECTRIC DIGITAL DATA PROCESSING ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&CC=CN&NR=117665914A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&CC=CN&NR=117665914A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO JINGJIE</creatorcontrib><creatorcontrib>YIN HANJUN</creatorcontrib><creatorcontrib>YANG HELONG</creatorcontrib><creatorcontrib>YANG QIYAN</creatorcontrib><creatorcontrib>WEI YAJIE</creatorcontrib><creatorcontrib>XU CHANGHAO</creatorcontrib><creatorcontrib>CAI ZHICHENG</creatorcontrib><title>Frequency dispersion curve automatic picking method based on machine learning</title><description>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing.
本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrsOAUEUBuBtFIJ3OB5AMcGKUjY2Gir95jjzsxM7F3OReHtbeADV13zT6txGvAqcfEibFBCT8Y6kxDeIS_aWsxEKRp7GPcgi917TjRM0jc-y9MaBBnB0Y5hXkzsPCYufs2rZHq_NaYXgO6TAAofcNReldnW93avNYf3P-QIfxDap</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>CAO JINGJIE</creator><creator>YIN HANJUN</creator><creator>YANG HELONG</creator><creator>YANG QIYAN</creator><creator>WEI YAJIE</creator><creator>XU CHANGHAO</creator><creator>CAI ZHICHENG</creator><scope>EVB</scope></search><sort><creationdate>20240308</creationdate><title>Frequency dispersion curve automatic picking method based on machine learning</title><author>CAO JINGJIE ; YIN HANJUN ; YANG HELONG ; YANG QIYAN ; WEI YAJIE ; XU CHANGHAO ; CAI ZHICHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117665914A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO JINGJIE</creatorcontrib><creatorcontrib>YIN HANJUN</creatorcontrib><creatorcontrib>YANG HELONG</creatorcontrib><creatorcontrib>YANG QIYAN</creatorcontrib><creatorcontrib>WEI YAJIE</creatorcontrib><creatorcontrib>XU CHANGHAO</creatorcontrib><creatorcontrib>CAI ZHICHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO JINGJIE</au><au>YIN HANJUN</au><au>YANG HELONG</au><au>YANG QIYAN</au><au>WEI YAJIE</au><au>XU CHANGHAO</au><au>CAI ZHICHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Frequency dispersion curve automatic picking method based on machine learning</title><date>2024-03-08</date><risdate>2024</risdate><abstract>The invention discloses a frequency dispersion curve automatic picking method based on machine learning. The method comprises the following steps: preprocessing seismic data; based on the pre-processed seismic data, utilizing a preset classification algorithm to obtain an area where a frequency dispersion curve is located; and extracting the area where the frequency dispersion curve is located to obtain a final frequency dispersion curve. The frequency dispersion curve can be prevented from being manually extracted, the seismic data processing workload is reduced, and the method has great significance in large-scale seismic data processing.
本发明公开了基于机器学习的频散曲线自动拾取方法,包括:对地震数据进行预处理;基于预处理后的所述地震数据,利用预设分类算法,获取频散曲线所在区域;对所述频散曲线所在区域进行提取,获取最终的频散曲线。本发明能避免人工手动提取频散曲线,减小地震数据处理工作量,对大规模地震数据处理具有重大意义。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117665914A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DETECTING MASSES OR OBJECTS ELECTRIC DIGITAL DATA PROCESSING GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | Frequency dispersion curve automatic picking method based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20JINGJIE&rft.date=2024-03-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117665914A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |