High-precision precession vortex flowmeter based on deep learning

The invention designs a high-precision precession vortex flow meter, in particular to a precession vortex flow meter integrating a multi-mode sensor and a time domain convolutional network (TCN) for prediction. The sensor part is composed of a temperature sensor and a pressure sensor which are respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI MENGYU, LI WEI, GONG XIAOQUAN, GAO ZHONGKE, CHEN BO, ZHOU BANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI MENGYU
LI WEI
GONG XIAOQUAN
GAO ZHONGKE
CHEN BO
ZHOU BANG
description The invention designs a high-precision precession vortex flow meter, in particular to a precession vortex flow meter integrating a multi-mode sensor and a time domain convolutional network (TCN) for prediction. The sensor part is composed of a temperature sensor and a pressure sensor which are respectively used for measuring the temperature and the pressure when fluid passes through. A time domain convolutional network is adopted to extract the characteristics of a temperature signal collected by a sensor and a processed pressure signal layer by layer for characteristic fusion, and a Slodhaar number is taken as a label value, so that a coefficient K in flow calculation of the precession vortex flow meter is corrected, and the effect of improving the measurement precision and the measurement range of the precession vortex flow meter is achieved. 本发明设计了一种高精度的旋进旋涡流量计,特别是融和了多模态传感器和时域卷积网络(TCN)进行预测的旋进旋涡流量计。其传感器部分由温度传感器和压力传感器两部分组成,分别用于测量流体通过时的温度和压力。并采用时域卷积网络逐层提取传感器采集的温度信号和处理后的压力信号的特征进行特征融合,以斯特劳哈尔数为标签值,从而对旋进旋涡流量计流量计算
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117647287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117647287A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117647287A3</originalsourceid><addsrcrecordid>eNrjZHD0yEzP0C0oSk3OLM7Mz1MAsVKLwcyy_KKS1AqFtJz88tzUktQihaTE4tQUBaBMSmpqgUJOamJRXmZeOg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0NzMxN7IwdzQmRg0AN0QyGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>High-precision precession vortex flowmeter based on deep learning</title><source>esp@cenet</source><creator>LI MENGYU ; LI WEI ; GONG XIAOQUAN ; GAO ZHONGKE ; CHEN BO ; ZHOU BANG</creator><creatorcontrib>LI MENGYU ; LI WEI ; GONG XIAOQUAN ; GAO ZHONGKE ; CHEN BO ; ZHOU BANG</creatorcontrib><description>The invention designs a high-precision precession vortex flow meter, in particular to a precession vortex flow meter integrating a multi-mode sensor and a time domain convolutional network (TCN) for prediction. The sensor part is composed of a temperature sensor and a pressure sensor which are respectively used for measuring the temperature and the pressure when fluid passes through. A time domain convolutional network is adopted to extract the characteristics of a temperature signal collected by a sensor and a processed pressure signal layer by layer for characteristic fusion, and a Slodhaar number is taken as a label value, so that a coefficient K in flow calculation of the precession vortex flow meter is corrected, and the effect of improving the measurement precision and the measurement range of the precession vortex flow meter is achieved. 本发明设计了一种高精度的旋进旋涡流量计,特别是融和了多模态传感器和时域卷积网络(TCN)进行预测的旋进旋涡流量计。其传感器部分由温度传感器和压力传感器两部分组成,分别用于测量流体通过时的温度和压力。并采用时域卷积网络逐层提取传感器采集的温度信号和处理后的压力信号的特征进行特征融合,以斯特劳哈尔数为标签值,从而对旋进旋涡流量计流量计算</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL ; METERING BY VOLUME ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240305&amp;DB=EPODOC&amp;CC=CN&amp;NR=117647287A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240305&amp;DB=EPODOC&amp;CC=CN&amp;NR=117647287A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI MENGYU</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>GONG XIAOQUAN</creatorcontrib><creatorcontrib>GAO ZHONGKE</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>ZHOU BANG</creatorcontrib><title>High-precision precession vortex flowmeter based on deep learning</title><description>The invention designs a high-precision precession vortex flow meter, in particular to a precession vortex flow meter integrating a multi-mode sensor and a time domain convolutional network (TCN) for prediction. The sensor part is composed of a temperature sensor and a pressure sensor which are respectively used for measuring the temperature and the pressure when fluid passes through. A time domain convolutional network is adopted to extract the characteristics of a temperature signal collected by a sensor and a processed pressure signal layer by layer for characteristic fusion, and a Slodhaar number is taken as a label value, so that a coefficient K in flow calculation of the precession vortex flow meter is corrected, and the effect of improving the measurement precision and the measurement range of the precession vortex flow meter is achieved. 本发明设计了一种高精度的旋进旋涡流量计,特别是融和了多模态传感器和时域卷积网络(TCN)进行预测的旋进旋涡流量计。其传感器部分由温度传感器和压力传感器两部分组成,分别用于测量流体通过时的温度和压力。并采用时域卷积网络逐层提取传感器采集的温度信号和处理后的压力信号的特征进行特征融合,以斯特劳哈尔数为标签值,从而对旋进旋涡流量计流量计算</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL</subject><subject>METERING BY VOLUME</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD0yEzP0C0oSk3OLM7Mz1MAsVKLwcyy_KKS1AqFtJz88tzUktQihaTE4tQUBaBMSmpqgUJOamJRXmZeOg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0NzMxN7IwdzQmRg0AN0QyGQ</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>LI MENGYU</creator><creator>LI WEI</creator><creator>GONG XIAOQUAN</creator><creator>GAO ZHONGKE</creator><creator>CHEN BO</creator><creator>ZHOU BANG</creator><scope>EVB</scope></search><sort><creationdate>20240305</creationdate><title>High-precision precession vortex flowmeter based on deep learning</title><author>LI MENGYU ; LI WEI ; GONG XIAOQUAN ; GAO ZHONGKE ; CHEN BO ; ZHOU BANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117647287A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL</topic><topic>METERING BY VOLUME</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LI MENGYU</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>GONG XIAOQUAN</creatorcontrib><creatorcontrib>GAO ZHONGKE</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>ZHOU BANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI MENGYU</au><au>LI WEI</au><au>GONG XIAOQUAN</au><au>GAO ZHONGKE</au><au>CHEN BO</au><au>ZHOU BANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>High-precision precession vortex flowmeter based on deep learning</title><date>2024-03-05</date><risdate>2024</risdate><abstract>The invention designs a high-precision precession vortex flow meter, in particular to a precession vortex flow meter integrating a multi-mode sensor and a time domain convolutional network (TCN) for prediction. The sensor part is composed of a temperature sensor and a pressure sensor which are respectively used for measuring the temperature and the pressure when fluid passes through. A time domain convolutional network is adopted to extract the characteristics of a temperature signal collected by a sensor and a processed pressure signal layer by layer for characteristic fusion, and a Slodhaar number is taken as a label value, so that a coefficient K in flow calculation of the precession vortex flow meter is corrected, and the effect of improving the measurement precision and the measurement range of the precession vortex flow meter is achieved. 本发明设计了一种高精度的旋进旋涡流量计,特别是融和了多模态传感器和时域卷积网络(TCN)进行预测的旋进旋涡流量计。其传感器部分由温度传感器和压力传感器两部分组成,分别用于测量流体通过时的温度和压力。并采用时域卷积网络逐层提取传感器采集的温度信号和处理后的压力信号的特征进行特征融合,以斯特劳哈尔数为标签值,从而对旋进旋涡流量计流量计算</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117647287A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL
METERING BY VOLUME
PHYSICS
TESTING
title High-precision precession vortex flowmeter based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20MENGYU&rft.date=2024-03-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117647287A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true