Botnet detection method based on multi-mode stacked automatic encoder
The invention discloses a botnet detection method based on a multi-mode stacked automatic encoder. The method comprises the following steps: acquiring an executable file of an application program; respectively carrying out dynamic analysis and static analysis on a data set containing a benign progra...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUN NING HAN GUANGJIE CHEN LELAN LOU XINGYU |
description | The invention discloses a botnet detection method based on a multi-mode stacked automatic encoder. The method comprises the following steps: acquiring an executable file of an application program; respectively carrying out dynamic analysis and static analysis on a data set containing a benign program and a zombie program, and extracting dynamic features based on a flow and static features based on a printable character string information graph; pre-training two stacked automatic encoders, respectively encoding the stream-based features and the graph-based features, and extracting deep features; fusing the dynamic features and the static features based on a multi-modal automatic encoder; performing fine adjustment on the multi-mode stacked automatic encoder model; and taking an encoder of the trained multi-mode stacked automatic encoder model as a feature extractor, and taking the output of the shared hidden layer as the input of a softmax layer to carry out zombie program detection. According to the method, t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117640190A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117640190A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117640190A3</originalsourceid><addsrcrecordid>eNrjZHB1yi_JSy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8UtzSjJ1c_NTUhWKSxKTs4GiiaUl-bmJJZnJCql5yUCJIh4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicCrQk3tnP0NDczMTA0NLA0ZgYNQDzOTMx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Botnet detection method based on multi-mode stacked automatic encoder</title><source>esp@cenet</source><creator>SUN NING ; HAN GUANGJIE ; CHEN LELAN ; LOU XINGYU</creator><creatorcontrib>SUN NING ; HAN GUANGJIE ; CHEN LELAN ; LOU XINGYU</creatorcontrib><description>The invention discloses a botnet detection method based on a multi-mode stacked automatic encoder. The method comprises the following steps: acquiring an executable file of an application program; respectively carrying out dynamic analysis and static analysis on a data set containing a benign program and a zombie program, and extracting dynamic features based on a flow and static features based on a printable character string information graph; pre-training two stacked automatic encoders, respectively encoding the stream-based features and the graph-based features, and extracting deep features; fusing the dynamic features and the static features based on a multi-modal automatic encoder; performing fine adjustment on the multi-mode stacked automatic encoder model; and taking an encoder of the trained multi-mode stacked automatic encoder model as a feature extractor, and taking the output of the shared hidden layer as the input of a softmax layer to carry out zombie program detection. According to the method, t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117640190A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117640190A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN NING</creatorcontrib><creatorcontrib>HAN GUANGJIE</creatorcontrib><creatorcontrib>CHEN LELAN</creatorcontrib><creatorcontrib>LOU XINGYU</creatorcontrib><title>Botnet detection method based on multi-mode stacked automatic encoder</title><description>The invention discloses a botnet detection method based on a multi-mode stacked automatic encoder. The method comprises the following steps: acquiring an executable file of an application program; respectively carrying out dynamic analysis and static analysis on a data set containing a benign program and a zombie program, and extracting dynamic features based on a flow and static features based on a printable character string information graph; pre-training two stacked automatic encoders, respectively encoding the stream-based features and the graph-based features, and extracting deep features; fusing the dynamic features and the static features based on a multi-modal automatic encoder; performing fine adjustment on the multi-mode stacked automatic encoder model; and taking an encoder of the trained multi-mode stacked automatic encoder model as a feature extractor, and taking the output of the shared hidden layer as the input of a softmax layer to carry out zombie program detection. According to the method, t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1yi_JSy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8UtzSjJ1c_NTUhWKSxKTs4GiiaUl-bmJJZnJCql5yUCJIh4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicCrQk3tnP0NDczMTA0NLA0ZgYNQDzOTMx</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>SUN NING</creator><creator>HAN GUANGJIE</creator><creator>CHEN LELAN</creator><creator>LOU XINGYU</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Botnet detection method based on multi-mode stacked automatic encoder</title><author>SUN NING ; HAN GUANGJIE ; CHEN LELAN ; LOU XINGYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117640190A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN NING</creatorcontrib><creatorcontrib>HAN GUANGJIE</creatorcontrib><creatorcontrib>CHEN LELAN</creatorcontrib><creatorcontrib>LOU XINGYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN NING</au><au>HAN GUANGJIE</au><au>CHEN LELAN</au><au>LOU XINGYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Botnet detection method based on multi-mode stacked automatic encoder</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a botnet detection method based on a multi-mode stacked automatic encoder. The method comprises the following steps: acquiring an executable file of an application program; respectively carrying out dynamic analysis and static analysis on a data set containing a benign program and a zombie program, and extracting dynamic features based on a flow and static features based on a printable character string information graph; pre-training two stacked automatic encoders, respectively encoding the stream-based features and the graph-based features, and extracting deep features; fusing the dynamic features and the static features based on a multi-modal automatic encoder; performing fine adjustment on the multi-mode stacked automatic encoder model; and taking an encoder of the trained multi-mode stacked automatic encoder model as a feature extractor, and taking the output of the shared hidden layer as the input of a softmax layer to carry out zombie program detection. According to the method, t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117640190A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Botnet detection method based on multi-mode stacked automatic encoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20NING&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117640190A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |