Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition
The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIN KE ZHU XIUSHUN TAN ZHISONG WEI XIAOCHUAN CAO YINGSHUANG CHEN WENYING SONG CHUN FAN YING WEN XIANGFENG XU QIN LUO LING |
description | The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117638941A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117638941A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117638941A3</originalsourceid><addsrcrecordid>eNqNjbsOgkAQRWksjPoPY6eFBcH4KJVoLMAGerLZHWGU3SGzS4x_LyR-gNW5xck90-h5JkOCOhA71UJWlDmsMnY1FA1LgBLFQo6W5bMGh-HN8gJLWrgWMuB1g6ZvafAthoYN9M6ggGbngyhyYZyGxvt5NHmo1uPix1m0vF7K9LbBjiv0ndI4BKr0Hsf7XXI4buNT8o_zBUfRQPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><source>esp@cenet</source><creator>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</creator><creatorcontrib>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</creatorcontrib><description>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117638941A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117638941A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN KE</creatorcontrib><creatorcontrib>ZHU XIUSHUN</creatorcontrib><creatorcontrib>TAN ZHISONG</creatorcontrib><creatorcontrib>WEI XIAOCHUAN</creatorcontrib><creatorcontrib>CAO YINGSHUANG</creatorcontrib><creatorcontrib>CHEN WENYING</creatorcontrib><creatorcontrib>SONG CHUN</creatorcontrib><creatorcontrib>FAN YING</creatorcontrib><creatorcontrib>WEN XIANGFENG</creatorcontrib><creatorcontrib>XU QIN</creatorcontrib><creatorcontrib>LUO LING</creatorcontrib><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><description>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbsOgkAQRWksjPoPY6eFBcH4KJVoLMAGerLZHWGU3SGzS4x_LyR-gNW5xck90-h5JkOCOhA71UJWlDmsMnY1FA1LgBLFQo6W5bMGh-HN8gJLWrgWMuB1g6ZvafAthoYN9M6ggGbngyhyYZyGxvt5NHmo1uPix1m0vF7K9LbBjiv0ndI4BKr0Hsf7XXI4buNT8o_zBUfRQPc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>LIN KE</creator><creator>ZHU XIUSHUN</creator><creator>TAN ZHISONG</creator><creator>WEI XIAOCHUAN</creator><creator>CAO YINGSHUANG</creator><creator>CHEN WENYING</creator><creator>SONG CHUN</creator><creator>FAN YING</creator><creator>WEN XIANGFENG</creator><creator>XU QIN</creator><creator>LUO LING</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><author>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117638941A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN KE</creatorcontrib><creatorcontrib>ZHU XIUSHUN</creatorcontrib><creatorcontrib>TAN ZHISONG</creatorcontrib><creatorcontrib>WEI XIAOCHUAN</creatorcontrib><creatorcontrib>CAO YINGSHUANG</creatorcontrib><creatorcontrib>CHEN WENYING</creatorcontrib><creatorcontrib>SONG CHUN</creatorcontrib><creatorcontrib>FAN YING</creatorcontrib><creatorcontrib>WEN XIANGFENG</creatorcontrib><creatorcontrib>XU QIN</creatorcontrib><creatorcontrib>LUO LING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN KE</au><au>ZHU XIUSHUN</au><au>TAN ZHISONG</au><au>WEI XIAOCHUAN</au><au>CAO YINGSHUANG</au><au>CHEN WENYING</au><au>SONG CHUN</au><au>FAN YING</au><au>WEN XIANGFENG</au><au>XU QIN</au><au>LUO LING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117638941A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20KE&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117638941A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |