Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition

The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN KE, ZHU XIUSHUN, TAN ZHISONG, WEI XIAOCHUAN, CAO YINGSHUANG, CHEN WENYING, SONG CHUN, FAN YING, WEN XIANGFENG, XU QIN, LUO LING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN KE
ZHU XIUSHUN
TAN ZHISONG
WEI XIAOCHUAN
CAO YINGSHUANG
CHEN WENYING
SONG CHUN
FAN YING
WEN XIANGFENG
XU QIN
LUO LING
description The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117638941A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117638941A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117638941A3</originalsourceid><addsrcrecordid>eNqNjbsOgkAQRWksjPoPY6eFBcH4KJVoLMAGerLZHWGU3SGzS4x_LyR-gNW5xck90-h5JkOCOhA71UJWlDmsMnY1FA1LgBLFQo6W5bMGh-HN8gJLWrgWMuB1g6ZvafAthoYN9M6ggGbngyhyYZyGxvt5NHmo1uPix1m0vF7K9LbBjiv0ndI4BKr0Hsf7XXI4buNT8o_zBUfRQPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><source>esp@cenet</source><creator>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</creator><creatorcontrib>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</creatorcontrib><description>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117638941A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117638941A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN KE</creatorcontrib><creatorcontrib>ZHU XIUSHUN</creatorcontrib><creatorcontrib>TAN ZHISONG</creatorcontrib><creatorcontrib>WEI XIAOCHUAN</creatorcontrib><creatorcontrib>CAO YINGSHUANG</creatorcontrib><creatorcontrib>CHEN WENYING</creatorcontrib><creatorcontrib>SONG CHUN</creatorcontrib><creatorcontrib>FAN YING</creatorcontrib><creatorcontrib>WEN XIANGFENG</creatorcontrib><creatorcontrib>XU QIN</creatorcontrib><creatorcontrib>LUO LING</creatorcontrib><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><description>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbsOgkAQRWksjPoPY6eFBcH4KJVoLMAGerLZHWGU3SGzS4x_LyR-gNW5xck90-h5JkOCOhA71UJWlDmsMnY1FA1LgBLFQo6W5bMGh-HN8gJLWrgWMuB1g6ZvafAthoYN9M6ggGbngyhyYZyGxvt5NHmo1uPix1m0vF7K9LbBjiv0ndI4BKr0Hsf7XXI4buNT8o_zBUfRQPc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>LIN KE</creator><creator>ZHU XIUSHUN</creator><creator>TAN ZHISONG</creator><creator>WEI XIAOCHUAN</creator><creator>CAO YINGSHUANG</creator><creator>CHEN WENYING</creator><creator>SONG CHUN</creator><creator>FAN YING</creator><creator>WEN XIANGFENG</creator><creator>XU QIN</creator><creator>LUO LING</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><author>LIN KE ; ZHU XIUSHUN ; TAN ZHISONG ; WEI XIAOCHUAN ; CAO YINGSHUANG ; CHEN WENYING ; SONG CHUN ; FAN YING ; WEN XIANGFENG ; XU QIN ; LUO LING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117638941A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN KE</creatorcontrib><creatorcontrib>ZHU XIUSHUN</creatorcontrib><creatorcontrib>TAN ZHISONG</creatorcontrib><creatorcontrib>WEI XIAOCHUAN</creatorcontrib><creatorcontrib>CAO YINGSHUANG</creatorcontrib><creatorcontrib>CHEN WENYING</creatorcontrib><creatorcontrib>SONG CHUN</creatorcontrib><creatorcontrib>FAN YING</creatorcontrib><creatorcontrib>WEN XIANGFENG</creatorcontrib><creatorcontrib>XU QIN</creatorcontrib><creatorcontrib>LUO LING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN KE</au><au>ZHU XIUSHUN</au><au>TAN ZHISONG</au><au>WEI XIAOCHUAN</au><au>CAO YINGSHUANG</au><au>CHEN WENYING</au><au>SONG CHUN</au><au>FAN YING</au><au>WEN XIANGFENG</au><au>XU QIN</au><au>LUO LING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a bidirectional LSTM (Long Short Term Memory) network micro-grid scheduling method under constraint conditions, which can establish a mapping relation between a micro-grid operation scene and a scheduling decision result based on a micro-grid optimization scheduling model of a bidirectional LSTM network, and train a bidirectional LSTM model by adding constraint condition data to a reference prediction scheme. Therefore, a more stable optimal scheduling strategy is generated. By comparing the performance of different models on the mean square error and the threshold over-limit average value and the performance of the models on different strategies, the mean square error and the threshold over-limit average value of the prediction data are remarkably reduced, the risk that the scheduling scheme exceeds the bearing capacity of the micro-grid under the limited condition is reduced, and the scheduling performance of the micro-grid is improved. The problem that when a deep learning model is</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117638941A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Bidirectional LSTM (Long Short Term Memory) network microgrid scheduling method under constraint condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20KE&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117638941A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true