C2f-Faster-based YOLOv8n power transmission line fault detection method

A YOLOv8n power transmission line fault detection method based on C2f-Faster belongs to the technical field of computer vision, and comprises the following steps: S1, establishing a fault detection data set; s2, marking the collected data set, and randomly dividing the data set into a training set,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DENG XIANGSHUAI, DU DONGSHENG, ZHAO ZHEMIN, LIAN HE, REN YIMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DENG XIANGSHUAI
DU DONGSHENG
ZHAO ZHEMIN
LIAN HE
REN YIMING
description A YOLOv8n power transmission line fault detection method based on C2f-Faster belongs to the technical field of computer vision, and comprises the following steps: S1, establishing a fault detection data set; s2, marking the collected data set, and randomly dividing the data set into a training set, a verification set and a test set according to 8: 2: 1; s3, in the aspect of a model, replacing a C2f module with a C2f-Faster module, improving a backbone network (Backbone) and a neck network (Neck) of the YOLOv8n, and constructing a YOLOv8n detection model based on the C2f-Faster; s4, a YOLOv8n detection model based on C2f-Faster is trained on the basis of the training set, and a detection model is obtained; and S5, finally, inputting the test set into a YOLOv8n detection model based on C2f-Faster, and outputting a power transmission line fault detection result, thereby realizing power transmission line fault diagnosis, and having very strong practical significance. By improving the backbone network and the neck
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117636125A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117636125A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117636125A3</originalsourceid><addsrcrecordid>eNrjZHB3NkrTdUssLkkt0k1KLE5NUYj09_Evs8hTKMgvTy1SKClKzCvOzSwuzszPU8jJzEtVSEsszSlRSEktSU0uAQnmppZk5KfwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3MzYzNDI1NHY2LUAAAIAzNh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>C2f-Faster-based YOLOv8n power transmission line fault detection method</title><source>esp@cenet</source><creator>DENG XIANGSHUAI ; DU DONGSHENG ; ZHAO ZHEMIN ; LIAN HE ; REN YIMING</creator><creatorcontrib>DENG XIANGSHUAI ; DU DONGSHENG ; ZHAO ZHEMIN ; LIAN HE ; REN YIMING</creatorcontrib><description>A YOLOv8n power transmission line fault detection method based on C2f-Faster belongs to the technical field of computer vision, and comprises the following steps: S1, establishing a fault detection data set; s2, marking the collected data set, and randomly dividing the data set into a training set, a verification set and a test set according to 8: 2: 1; s3, in the aspect of a model, replacing a C2f module with a C2f-Faster module, improving a backbone network (Backbone) and a neck network (Neck) of the YOLOv8n, and constructing a YOLOv8n detection model based on the C2f-Faster; s4, a YOLOv8n detection model based on C2f-Faster is trained on the basis of the training set, and a detection model is obtained; and S5, finally, inputting the test set into a YOLOv8n detection model based on C2f-Faster, and outputting a power transmission line fault detection result, thereby realizing power transmission line fault diagnosis, and having very strong practical significance. By improving the backbone network and the neck</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117636125A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117636125A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DENG XIANGSHUAI</creatorcontrib><creatorcontrib>DU DONGSHENG</creatorcontrib><creatorcontrib>ZHAO ZHEMIN</creatorcontrib><creatorcontrib>LIAN HE</creatorcontrib><creatorcontrib>REN YIMING</creatorcontrib><title>C2f-Faster-based YOLOv8n power transmission line fault detection method</title><description>A YOLOv8n power transmission line fault detection method based on C2f-Faster belongs to the technical field of computer vision, and comprises the following steps: S1, establishing a fault detection data set; s2, marking the collected data set, and randomly dividing the data set into a training set, a verification set and a test set according to 8: 2: 1; s3, in the aspect of a model, replacing a C2f module with a C2f-Faster module, improving a backbone network (Backbone) and a neck network (Neck) of the YOLOv8n, and constructing a YOLOv8n detection model based on the C2f-Faster; s4, a YOLOv8n detection model based on C2f-Faster is trained on the basis of the training set, and a detection model is obtained; and S5, finally, inputting the test set into a YOLOv8n detection model based on C2f-Faster, and outputting a power transmission line fault detection result, thereby realizing power transmission line fault diagnosis, and having very strong practical significance. By improving the backbone network and the neck</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3NkrTdUssLkkt0k1KLE5NUYj09_Evs8hTKMgvTy1SKClKzCvOzSwuzszPU8jJzEtVSEsszSlRSEktSU0uAQnmppZk5KfwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3MzYzNDI1NHY2LUAAAIAzNh</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>DENG XIANGSHUAI</creator><creator>DU DONGSHENG</creator><creator>ZHAO ZHEMIN</creator><creator>LIAN HE</creator><creator>REN YIMING</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>C2f-Faster-based YOLOv8n power transmission line fault detection method</title><author>DENG XIANGSHUAI ; DU DONGSHENG ; ZHAO ZHEMIN ; LIAN HE ; REN YIMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117636125A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DENG XIANGSHUAI</creatorcontrib><creatorcontrib>DU DONGSHENG</creatorcontrib><creatorcontrib>ZHAO ZHEMIN</creatorcontrib><creatorcontrib>LIAN HE</creatorcontrib><creatorcontrib>REN YIMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DENG XIANGSHUAI</au><au>DU DONGSHENG</au><au>ZHAO ZHEMIN</au><au>LIAN HE</au><au>REN YIMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>C2f-Faster-based YOLOv8n power transmission line fault detection method</title><date>2024-03-01</date><risdate>2024</risdate><abstract>A YOLOv8n power transmission line fault detection method based on C2f-Faster belongs to the technical field of computer vision, and comprises the following steps: S1, establishing a fault detection data set; s2, marking the collected data set, and randomly dividing the data set into a training set, a verification set and a test set according to 8: 2: 1; s3, in the aspect of a model, replacing a C2f module with a C2f-Faster module, improving a backbone network (Backbone) and a neck network (Neck) of the YOLOv8n, and constructing a YOLOv8n detection model based on the C2f-Faster; s4, a YOLOv8n detection model based on C2f-Faster is trained on the basis of the training set, and a detection model is obtained; and S5, finally, inputting the test set into a YOLOv8n detection model based on C2f-Faster, and outputting a power transmission line fault detection result, thereby realizing power transmission line fault diagnosis, and having very strong practical significance. By improving the backbone network and the neck</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117636125A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title C2f-Faster-based YOLOv8n power transmission line fault detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DENG%20XIANGSHUAI&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117636125A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true