Multi-spectral image classification method guided by multiple attention mechanisms

The invention discloses a multi-spectral image classification method guided by multiple attention mechanisms, and the method comprises the steps: firstly carrying out the dimension reduction of an original image through principal component analysis (PCA), segmenting the original image into data bloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG ZHIWEI, ZHENG YANG, DAI YUNFENG, FENG XINGMING, BAI JINGJING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG ZHIWEI
ZHENG YANG
DAI YUNFENG
FENG XINGMING
BAI JINGJING
description The invention discloses a multi-spectral image classification method guided by multiple attention mechanisms, and the method comprises the steps: firstly carrying out the dimension reduction of an original image through principal component analysis (PCA), segmenting the original image into data blocks, enabling an output result to pass through three feature modules, optimizing a three-dimensional convolutional neural network through the attention mechanisms, extracting the spatial spectrum features, inputting the spatial spectrum features into a gated loop (GRU) unit, and carrying out the recognition of the spatial spectrum features. The output size is adjusted through a full-connection neural network, high-layer feature information and low-layer feature information are effectively fused, finally, output data of a feature module and the output data of the recurrent neural network are merged and input into a Softmax layer for classification, and a final classification result is obtained. According to the metho
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117636006A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117636006A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117636006A3</originalsourceid><addsrcrecordid>eNqNyz0KwkAQQOFtLES9w3iAQEJgrSVEbLQQ-zDuTpKB_cOZFN5ehBzA6jXf25rHbQnKlRRy-sYAHHEicAFFeGSHyjlBJJ2zh2lhTx5eH4i_qQQCVKW0GjdjYomyN5sRg9Bh7c4cL_2zu1ZU8kBS0FEiHbp705xsa-vantt_zBd2HTjS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-spectral image classification method guided by multiple attention mechanisms</title><source>esp@cenet</source><creator>ZHANG ZHIWEI ; ZHENG YANG ; DAI YUNFENG ; FENG XINGMING ; BAI JINGJING</creator><creatorcontrib>ZHANG ZHIWEI ; ZHENG YANG ; DAI YUNFENG ; FENG XINGMING ; BAI JINGJING</creatorcontrib><description>The invention discloses a multi-spectral image classification method guided by multiple attention mechanisms, and the method comprises the steps: firstly carrying out the dimension reduction of an original image through principal component analysis (PCA), segmenting the original image into data blocks, enabling an output result to pass through three feature modules, optimizing a three-dimensional convolutional neural network through the attention mechanisms, extracting the spatial spectrum features, inputting the spatial spectrum features into a gated loop (GRU) unit, and carrying out the recognition of the spatial spectrum features. The output size is adjusted through a full-connection neural network, high-layer feature information and low-layer feature information are effectively fused, finally, output data of a feature module and the output data of the recurrent neural network are merged and input into a Softmax layer for classification, and a final classification result is obtained. According to the metho</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117636006A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117636006A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHIWEI</creatorcontrib><creatorcontrib>ZHENG YANG</creatorcontrib><creatorcontrib>DAI YUNFENG</creatorcontrib><creatorcontrib>FENG XINGMING</creatorcontrib><creatorcontrib>BAI JINGJING</creatorcontrib><title>Multi-spectral image classification method guided by multiple attention mechanisms</title><description>The invention discloses a multi-spectral image classification method guided by multiple attention mechanisms, and the method comprises the steps: firstly carrying out the dimension reduction of an original image through principal component analysis (PCA), segmenting the original image into data blocks, enabling an output result to pass through three feature modules, optimizing a three-dimensional convolutional neural network through the attention mechanisms, extracting the spatial spectrum features, inputting the spatial spectrum features into a gated loop (GRU) unit, and carrying out the recognition of the spatial spectrum features. The output size is adjusted through a full-connection neural network, high-layer feature information and low-layer feature information are effectively fused, finally, output data of a feature module and the output data of the recurrent neural network are merged and input into a Softmax layer for classification, and a final classification result is obtained. According to the metho</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyz0KwkAQQOFtLES9w3iAQEJgrSVEbLQQ-zDuTpKB_cOZFN5ehBzA6jXf25rHbQnKlRRy-sYAHHEicAFFeGSHyjlBJJ2zh2lhTx5eH4i_qQQCVKW0GjdjYomyN5sRg9Bh7c4cL_2zu1ZU8kBS0FEiHbp705xsa-vantt_zBd2HTjS</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>ZHANG ZHIWEI</creator><creator>ZHENG YANG</creator><creator>DAI YUNFENG</creator><creator>FENG XINGMING</creator><creator>BAI JINGJING</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Multi-spectral image classification method guided by multiple attention mechanisms</title><author>ZHANG ZHIWEI ; ZHENG YANG ; DAI YUNFENG ; FENG XINGMING ; BAI JINGJING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117636006A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHIWEI</creatorcontrib><creatorcontrib>ZHENG YANG</creatorcontrib><creatorcontrib>DAI YUNFENG</creatorcontrib><creatorcontrib>FENG XINGMING</creatorcontrib><creatorcontrib>BAI JINGJING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHIWEI</au><au>ZHENG YANG</au><au>DAI YUNFENG</au><au>FENG XINGMING</au><au>BAI JINGJING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-spectral image classification method guided by multiple attention mechanisms</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a multi-spectral image classification method guided by multiple attention mechanisms, and the method comprises the steps: firstly carrying out the dimension reduction of an original image through principal component analysis (PCA), segmenting the original image into data blocks, enabling an output result to pass through three feature modules, optimizing a three-dimensional convolutional neural network through the attention mechanisms, extracting the spatial spectrum features, inputting the spatial spectrum features into a gated loop (GRU) unit, and carrying out the recognition of the spatial spectrum features. The output size is adjusted through a full-connection neural network, high-layer feature information and low-layer feature information are effectively fused, finally, output data of a feature module and the output data of the recurrent neural network are merged and input into a Softmax layer for classification, and a final classification result is obtained. According to the metho</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117636006A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Multi-spectral image classification method guided by multiple attention mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHIWEI&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117636006A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true