Group target tracking method based on robust MS-MeMBer filtering
The invention discloses a group target tracking method based on robust MS-MeMBer filtering, and belongs to the technical field of information processing, and the method comprises the steps: initializing parameters, then carrying out the prediction step of robust MS-MeMBer filtering, and generating p...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI YISHUI SUN KANG WANG XUXIN JIANG YUE CHEN HUI ZHAO ZIWEN CHEN TIANBO CUI JING |
description | The invention discloses a group target tracking method based on robust MS-MeMBer filtering, and belongs to the technical field of information processing, and the method comprises the steps: initializing parameters, then carrying out the prediction step of robust MS-MeMBer filtering, and generating predicted multi-target density; obtaining a multi-sensor measurement set, and carrying out measurement partition on the multi-sensor measurement set based on an S-D matching algorithm to generate a measurement partition set; calculating the predicted multi-target density and the measurement to-be-divided set to obtain updated multi-target density; obtaining a group structure of the group target through a graph theory algorithm and an adjacent matrix, and obtaining a motion state of the group target through a stochastic differential equation model; and transmitting the group structure and the motion state to a prediction step of robust MS-MeMBer filtering at the next moment for iterative loop, and generating a tracke |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117634614A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117634614A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117634614A3</originalsourceid><addsrcrecordid>eNrjZHBwL8ovLVAoSSxKTy1RKClKTM7OzEtXyE0tychPUUhKLE5NUcjPUyjKTyotLlHwDdb1TfV1Si1SSMvMKUktAirlYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhuZmxiZmhiaOxsSoAQCMVTC1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Group target tracking method based on robust MS-MeMBer filtering</title><source>esp@cenet</source><creator>LI YISHUI ; SUN KANG ; WANG XUXIN ; JIANG YUE ; CHEN HUI ; ZHAO ZIWEN ; CHEN TIANBO ; CUI JING</creator><creatorcontrib>LI YISHUI ; SUN KANG ; WANG XUXIN ; JIANG YUE ; CHEN HUI ; ZHAO ZIWEN ; CHEN TIANBO ; CUI JING</creatorcontrib><description>The invention discloses a group target tracking method based on robust MS-MeMBer filtering, and belongs to the technical field of information processing, and the method comprises the steps: initializing parameters, then carrying out the prediction step of robust MS-MeMBer filtering, and generating predicted multi-target density; obtaining a multi-sensor measurement set, and carrying out measurement partition on the multi-sensor measurement set based on an S-D matching algorithm to generate a measurement partition set; calculating the predicted multi-target density and the measurement to-be-divided set to obtain updated multi-target density; obtaining a group structure of the group target through a graph theory algorithm and an adjacent matrix, and obtaining a motion state of the group target through a stochastic differential equation model; and transmitting the group structure and the motion state to a prediction step of robust MS-MeMBer filtering at the next moment for iterative loop, and generating a tracke</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117634614A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117634614A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI YISHUI</creatorcontrib><creatorcontrib>SUN KANG</creatorcontrib><creatorcontrib>WANG XUXIN</creatorcontrib><creatorcontrib>JIANG YUE</creatorcontrib><creatorcontrib>CHEN HUI</creatorcontrib><creatorcontrib>ZHAO ZIWEN</creatorcontrib><creatorcontrib>CHEN TIANBO</creatorcontrib><creatorcontrib>CUI JING</creatorcontrib><title>Group target tracking method based on robust MS-MeMBer filtering</title><description>The invention discloses a group target tracking method based on robust MS-MeMBer filtering, and belongs to the technical field of information processing, and the method comprises the steps: initializing parameters, then carrying out the prediction step of robust MS-MeMBer filtering, and generating predicted multi-target density; obtaining a multi-sensor measurement set, and carrying out measurement partition on the multi-sensor measurement set based on an S-D matching algorithm to generate a measurement partition set; calculating the predicted multi-target density and the measurement to-be-divided set to obtain updated multi-target density; obtaining a group structure of the group target through a graph theory algorithm and an adjacent matrix, and obtaining a motion state of the group target through a stochastic differential equation model; and transmitting the group structure and the motion state to a prediction step of robust MS-MeMBer filtering at the next moment for iterative loop, and generating a tracke</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwL8ovLVAoSSxKTy1RKClKTM7OzEtXyE0tychPUUhKLE5NUcjPUyjKTyotLlHwDdb1TfV1Si1SSMvMKUktAirlYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhuZmxiZmhiaOxsSoAQCMVTC1</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>LI YISHUI</creator><creator>SUN KANG</creator><creator>WANG XUXIN</creator><creator>JIANG YUE</creator><creator>CHEN HUI</creator><creator>ZHAO ZIWEN</creator><creator>CHEN TIANBO</creator><creator>CUI JING</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Group target tracking method based on robust MS-MeMBer filtering</title><author>LI YISHUI ; SUN KANG ; WANG XUXIN ; JIANG YUE ; CHEN HUI ; ZHAO ZIWEN ; CHEN TIANBO ; CUI JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117634614A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI YISHUI</creatorcontrib><creatorcontrib>SUN KANG</creatorcontrib><creatorcontrib>WANG XUXIN</creatorcontrib><creatorcontrib>JIANG YUE</creatorcontrib><creatorcontrib>CHEN HUI</creatorcontrib><creatorcontrib>ZHAO ZIWEN</creatorcontrib><creatorcontrib>CHEN TIANBO</creatorcontrib><creatorcontrib>CUI JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI YISHUI</au><au>SUN KANG</au><au>WANG XUXIN</au><au>JIANG YUE</au><au>CHEN HUI</au><au>ZHAO ZIWEN</au><au>CHEN TIANBO</au><au>CUI JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Group target tracking method based on robust MS-MeMBer filtering</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a group target tracking method based on robust MS-MeMBer filtering, and belongs to the technical field of information processing, and the method comprises the steps: initializing parameters, then carrying out the prediction step of robust MS-MeMBer filtering, and generating predicted multi-target density; obtaining a multi-sensor measurement set, and carrying out measurement partition on the multi-sensor measurement set based on an S-D matching algorithm to generate a measurement partition set; calculating the predicted multi-target density and the measurement to-be-divided set to obtain updated multi-target density; obtaining a group structure of the group target through a graph theory algorithm and an adjacent matrix, and obtaining a motion state of the group target through a stochastic differential equation model; and transmitting the group structure and the motion state to a prediction step of robust MS-MeMBer filtering at the next moment for iterative loop, and generating a tracke</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117634614A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Group target tracking method based on robust MS-MeMBer filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20YISHUI&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117634614A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |