Seismic data reconstruction method based on mask guidance attention convolutional neural network

The invention discloses a seismic data reconstruction method based on a mask guidance attention convolutional neural network. According to the method, a mask updating mechanism and attention are combined, a context feature relationship is established through a mask guiding attention mechanism, and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG LIANG, YANG HEBO, LIU YANG, JIA YONGNA, CHEN RAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG LIANG
YANG HEBO
LIU YANG
JIA YONGNA
CHEN RAN
description The invention discloses a seismic data reconstruction method based on a mask guidance attention convolutional neural network. According to the method, a mask updating mechanism and attention are combined, a context feature relationship is established through a mask guiding attention mechanism, and a relationship between local features is established by calculating cross relevancy between different local features, so that global information can be obtained by the local features; and the learning ability of local features is enhanced by introducing more context information. Therefore, mask guidance attention can establish a long-distance feature relationship without significantly increasing the depth of the network, and local features and global features are effectively fused. The iterative updating operation of the mask guides the reconstruction process of the network, so that each local feature serves as input to obtain more global information, and the problem of insufficient utilization of the global feature
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117631026A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117631026A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117631026A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeodxgMIxkJdS1FcudF9HZOxhqaZkkz0-rbFA7h678P7c3W_kkudM2BRECIZDkliNuI4QEfyYgsPTGRh3JhaaLKzGAwBilCYuuH0Zp9HRw-BcpwgH47tUs2e6BOtflyo9el4q84b6rmm1KOhoayri9b7stDbXXko_mm-OeE-Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Seismic data reconstruction method based on mask guidance attention convolutional neural network</title><source>esp@cenet</source><creator>YANG LIANG ; YANG HEBO ; LIU YANG ; JIA YONGNA ; CHEN RAN</creator><creatorcontrib>YANG LIANG ; YANG HEBO ; LIU YANG ; JIA YONGNA ; CHEN RAN</creatorcontrib><description>The invention discloses a seismic data reconstruction method based on a mask guidance attention convolutional neural network. According to the method, a mask updating mechanism and attention are combined, a context feature relationship is established through a mask guiding attention mechanism, and a relationship between local features is established by calculating cross relevancy between different local features, so that global information can be obtained by the local features; and the learning ability of local features is enhanced by introducing more context information. Therefore, mask guidance attention can establish a long-distance feature relationship without significantly increasing the depth of the network, and local features and global features are effectively fused. The iterative updating operation of the mask guides the reconstruction process of the network, so that each local feature serves as input to obtain more global information, and the problem of insufficient utilization of the global feature</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; ELECTRIC DIGITAL DATA PROCESSING ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117631026A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240301&amp;DB=EPODOC&amp;CC=CN&amp;NR=117631026A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>YANG HEBO</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><creatorcontrib>CHEN RAN</creatorcontrib><title>Seismic data reconstruction method based on mask guidance attention convolutional neural network</title><description>The invention discloses a seismic data reconstruction method based on a mask guidance attention convolutional neural network. According to the method, a mask updating mechanism and attention are combined, a context feature relationship is established through a mask guiding attention mechanism, and a relationship between local features is established by calculating cross relevancy between different local features, so that global information can be obtained by the local features; and the learning ability of local features is enhanced by introducing more context information. Therefore, mask guidance attention can establish a long-distance feature relationship without significantly increasing the depth of the network, and local features and global features are effectively fused. The iterative updating operation of the mask guides the reconstruction process of the network, so that each local feature serves as input to obtain more global information, and the problem of insufficient utilization of the global feature</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeodxgMIxkJdS1FcudF9HZOxhqaZkkz0-rbFA7h678P7c3W_kkudM2BRECIZDkliNuI4QEfyYgsPTGRh3JhaaLKzGAwBilCYuuH0Zp9HRw-BcpwgH47tUs2e6BOtflyo9el4q84b6rmm1KOhoayri9b7stDbXXko_mm-OeE-Qw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>YANG LIANG</creator><creator>YANG HEBO</creator><creator>LIU YANG</creator><creator>JIA YONGNA</creator><creator>CHEN RAN</creator><scope>EVB</scope></search><sort><creationdate>20240301</creationdate><title>Seismic data reconstruction method based on mask guidance attention convolutional neural network</title><author>YANG LIANG ; YANG HEBO ; LIU YANG ; JIA YONGNA ; CHEN RAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117631026A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>YANG HEBO</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><creatorcontrib>CHEN RAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG LIANG</au><au>YANG HEBO</au><au>LIU YANG</au><au>JIA YONGNA</au><au>CHEN RAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Seismic data reconstruction method based on mask guidance attention convolutional neural network</title><date>2024-03-01</date><risdate>2024</risdate><abstract>The invention discloses a seismic data reconstruction method based on a mask guidance attention convolutional neural network. According to the method, a mask updating mechanism and attention are combined, a context feature relationship is established through a mask guiding attention mechanism, and a relationship between local features is established by calculating cross relevancy between different local features, so that global information can be obtained by the local features; and the learning ability of local features is enhanced by introducing more context information. Therefore, mask guidance attention can establish a long-distance feature relationship without significantly increasing the depth of the network, and local features and global features are effectively fused. The iterative updating operation of the mask guides the reconstruction process of the network, so that each local feature serves as input to obtain more global information, and the problem of insufficient utilization of the global feature</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117631026A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
ELECTRIC DIGITAL DATA PROCESSING
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Seismic data reconstruction method based on mask guidance attention convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20LIANG&rft.date=2024-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117631026A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true