Industrial control network abnormal flow detection method based on data enhancement and deep learning

The invention discloses an industrial control network abnormal flow detection method based on data enhancement and deep learning, and relates to an industrial control system safety detection method. According to the model, a hybrid sampling algorithm (ADASEN) is used for balancing data, the algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG GUOGANG, ZHENG HONGYU, SUN YIFEI, ZONG XUEJUN, SUN CHENSEN, HE ZHEN, NING BOWEI, LIAN LIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG GUOGANG
ZHENG HONGYU
SUN YIFEI
ZONG XUEJUN
SUN CHENSEN
HE ZHEN
NING BOWEI
LIAN LIAN
description The invention discloses an industrial control network abnormal flow detection method based on data enhancement and deep learning, and relates to an industrial control system safety detection method. According to the model, a hybrid sampling algorithm (ADASEN) is used for balancing data, the algorithm fuses an adaptive oversampling algorithm (ADASYN) and a repeated editing neighbor rule undersampling algorithm (RENN), density distribution information of samples is fully utilized, decision boundary samples are concerned, and the problem of data imbalance is effectively solved; the data feature importance is calculated by using a Gain method of an XGBoost algorithm, the Pearson correlation analysis is introduced to calculate the correlation coefficient between the features to optimize the data feature importance, a deep cross neural network model is constructed, the data features are fully extracted to improve the anomaly detection accuracy, and the anomaly traffic detection is completed. According to the method
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117614680A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117614680A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117614680A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCQYm2EhRtrOzDZPdrgpuZsDuS67uFB7D6PN6DPy9wE_9JFnsO5FQsaiCBTRrfxK1oHLJ4Bp3Iw-CsV6EB1qmnlhM8ZfZsTJCOxWGAGLH4nGOkAI7Sy2tZzJ4cEla_XRTry_lRXzcYtUEa2SGfNvW9LA9Vua-O29Pun-YLaU0_ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial control network abnormal flow detection method based on data enhancement and deep learning</title><source>esp@cenet</source><creator>WANG GUOGANG ; ZHENG HONGYU ; SUN YIFEI ; ZONG XUEJUN ; SUN CHENSEN ; HE ZHEN ; NING BOWEI ; LIAN LIAN</creator><creatorcontrib>WANG GUOGANG ; ZHENG HONGYU ; SUN YIFEI ; ZONG XUEJUN ; SUN CHENSEN ; HE ZHEN ; NING BOWEI ; LIAN LIAN</creatorcontrib><description>The invention discloses an industrial control network abnormal flow detection method based on data enhancement and deep learning, and relates to an industrial control system safety detection method. According to the model, a hybrid sampling algorithm (ADASEN) is used for balancing data, the algorithm fuses an adaptive oversampling algorithm (ADASYN) and a repeated editing neighbor rule undersampling algorithm (RENN), density distribution information of samples is fully utilized, decision boundary samples are concerned, and the problem of data imbalance is effectively solved; the data feature importance is calculated by using a Gain method of an XGBoost algorithm, the Pearson correlation analysis is introduced to calculate the correlation coefficient between the features to optimize the data feature importance, a deep cross neural network model is constructed, the data features are fully extracted to improve the anomaly detection accuracy, and the anomaly traffic detection is completed. According to the method</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=CN&amp;NR=117614680A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=CN&amp;NR=117614680A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG GUOGANG</creatorcontrib><creatorcontrib>ZHENG HONGYU</creatorcontrib><creatorcontrib>SUN YIFEI</creatorcontrib><creatorcontrib>ZONG XUEJUN</creatorcontrib><creatorcontrib>SUN CHENSEN</creatorcontrib><creatorcontrib>HE ZHEN</creatorcontrib><creatorcontrib>NING BOWEI</creatorcontrib><creatorcontrib>LIAN LIAN</creatorcontrib><title>Industrial control network abnormal flow detection method based on data enhancement and deep learning</title><description>The invention discloses an industrial control network abnormal flow detection method based on data enhancement and deep learning, and relates to an industrial control system safety detection method. According to the model, a hybrid sampling algorithm (ADASEN) is used for balancing data, the algorithm fuses an adaptive oversampling algorithm (ADASYN) and a repeated editing neighbor rule undersampling algorithm (RENN), density distribution information of samples is fully utilized, decision boundary samples are concerned, and the problem of data imbalance is effectively solved; the data feature importance is calculated by using a Gain method of an XGBoost algorithm, the Pearson correlation analysis is introduced to calculate the correlation coefficient between the features to optimize the data feature importance, a deep cross neural network model is constructed, the data features are fully extracted to improve the anomaly detection accuracy, and the anomaly traffic detection is completed. According to the method</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCQYm2EhRtrOzDZPdrgpuZsDuS67uFB7D6PN6DPy9wE_9JFnsO5FQsaiCBTRrfxK1oHLJ4Bp3Iw-CsV6EB1qmnlhM8ZfZsTJCOxWGAGLH4nGOkAI7Sy2tZzJ4cEla_XRTry_lRXzcYtUEa2SGfNvW9LA9Vua-O29Pun-YLaU0_ew</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>WANG GUOGANG</creator><creator>ZHENG HONGYU</creator><creator>SUN YIFEI</creator><creator>ZONG XUEJUN</creator><creator>SUN CHENSEN</creator><creator>HE ZHEN</creator><creator>NING BOWEI</creator><creator>LIAN LIAN</creator><scope>EVB</scope></search><sort><creationdate>20240227</creationdate><title>Industrial control network abnormal flow detection method based on data enhancement and deep learning</title><author>WANG GUOGANG ; ZHENG HONGYU ; SUN YIFEI ; ZONG XUEJUN ; SUN CHENSEN ; HE ZHEN ; NING BOWEI ; LIAN LIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117614680A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG GUOGANG</creatorcontrib><creatorcontrib>ZHENG HONGYU</creatorcontrib><creatorcontrib>SUN YIFEI</creatorcontrib><creatorcontrib>ZONG XUEJUN</creatorcontrib><creatorcontrib>SUN CHENSEN</creatorcontrib><creatorcontrib>HE ZHEN</creatorcontrib><creatorcontrib>NING BOWEI</creatorcontrib><creatorcontrib>LIAN LIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG GUOGANG</au><au>ZHENG HONGYU</au><au>SUN YIFEI</au><au>ZONG XUEJUN</au><au>SUN CHENSEN</au><au>HE ZHEN</au><au>NING BOWEI</au><au>LIAN LIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial control network abnormal flow detection method based on data enhancement and deep learning</title><date>2024-02-27</date><risdate>2024</risdate><abstract>The invention discloses an industrial control network abnormal flow detection method based on data enhancement and deep learning, and relates to an industrial control system safety detection method. According to the model, a hybrid sampling algorithm (ADASEN) is used for balancing data, the algorithm fuses an adaptive oversampling algorithm (ADASYN) and a repeated editing neighbor rule undersampling algorithm (RENN), density distribution information of samples is fully utilized, decision boundary samples are concerned, and the problem of data imbalance is effectively solved; the data feature importance is calculated by using a Gain method of an XGBoost algorithm, the Pearson correlation analysis is introduced to calculate the correlation coefficient between the features to optimize the data feature importance, a deep cross neural network model is constructed, the data features are fully extracted to improve the anomaly detection accuracy, and the anomaly traffic detection is completed. According to the method</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117614680A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Industrial control network abnormal flow detection method based on data enhancement and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20GUOGANG&rft.date=2024-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117614680A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true