Refining ladle slag entrapment prediction method and system adopting regression decision tree

The invention discloses a refining ladle slag entrapment prediction method and system adopting a regression decision tree. The method comprises the following steps: firstly, collecting refining data in the ladle bottom blowing refining process, then preprocessing the refining data, and inputting the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI GUANGQIANG, HE ZHU, CHAUAIDA, LIU CHANG, WANG QIANG, LIU XIAOHANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI GUANGQIANG
HE ZHU
CHAUAIDA
LIU CHANG
WANG QIANG
LIU XIAOHANG
description The invention discloses a refining ladle slag entrapment prediction method and system adopting a regression decision tree. The method comprises the following steps: firstly, collecting refining data in the ladle bottom blowing refining process, then preprocessing the refining data, and inputting the preprocessed data into a machine learning regression decision tree model for training and prediction to obtain a prediction result. According to the method, a refining steel ladle structure is converted into a corresponding machine learning special structure, unnecessary interaction and coupling are avoided, network parameters with similar characteristics are reused, information of a steel ladle refining physical principle is introduced, dependence of a model on a sample is greatly reduced, and the method is suitable for large-scale popularization and application. And the modeling, training and learning efficiency and the model application success rate of the decision tree model can be remarkably improved. A decis
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117593254A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117593254A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117593254A3</originalsourceid><addsrcrecordid>eNqNi7EKwjAURbM4iPoPzw9wqLWIoxTFyUFcpTyS2xpIk5D3Fv9eK36A0znDOXPzuKH30ceBArsAksADIWrhPH5AucB5qz5FGqHP5IijI3mJYiR2Kev0FgwFIlPlYP1XtABLM-s5CFY_Lsz6fLq3lw1y6iCZLSK0a69VtW8O9bbZHet_mjdIczzm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Refining ladle slag entrapment prediction method and system adopting regression decision tree</title><source>esp@cenet</source><creator>LI GUANGQIANG ; HE ZHU ; CHAUAIDA ; LIU CHANG ; WANG QIANG ; LIU XIAOHANG</creator><creatorcontrib>LI GUANGQIANG ; HE ZHU ; CHAUAIDA ; LIU CHANG ; WANG QIANG ; LIU XIAOHANG</creatorcontrib><description>The invention discloses a refining ladle slag entrapment prediction method and system adopting a regression decision tree. The method comprises the following steps: firstly, collecting refining data in the ladle bottom blowing refining process, then preprocessing the refining data, and inputting the preprocessed data into a machine learning regression decision tree model for training and prediction to obtain a prediction result. According to the method, a refining steel ladle structure is converted into a corresponding machine learning special structure, unnecessary interaction and coupling are avoided, network parameters with similar characteristics are reused, information of a steel ladle refining physical principle is introduced, dependence of a model on a sample is greatly reduced, and the method is suitable for large-scale popularization and application. And the modeling, training and learning efficiency and the model application success rate of the decision tree model can be remarkably improved. A decis</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240223&amp;DB=EPODOC&amp;CC=CN&amp;NR=117593254A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240223&amp;DB=EPODOC&amp;CC=CN&amp;NR=117593254A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI GUANGQIANG</creatorcontrib><creatorcontrib>HE ZHU</creatorcontrib><creatorcontrib>CHAUAIDA</creatorcontrib><creatorcontrib>LIU CHANG</creatorcontrib><creatorcontrib>WANG QIANG</creatorcontrib><creatorcontrib>LIU XIAOHANG</creatorcontrib><title>Refining ladle slag entrapment prediction method and system adopting regression decision tree</title><description>The invention discloses a refining ladle slag entrapment prediction method and system adopting a regression decision tree. The method comprises the following steps: firstly, collecting refining data in the ladle bottom blowing refining process, then preprocessing the refining data, and inputting the preprocessed data into a machine learning regression decision tree model for training and prediction to obtain a prediction result. According to the method, a refining steel ladle structure is converted into a corresponding machine learning special structure, unnecessary interaction and coupling are avoided, network parameters with similar characteristics are reused, information of a steel ladle refining physical principle is introduced, dependence of a model on a sample is greatly reduced, and the method is suitable for large-scale popularization and application. And the modeling, training and learning efficiency and the model application success rate of the decision tree model can be remarkably improved. A decis</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwjAURbM4iPoPzw9wqLWIoxTFyUFcpTyS2xpIk5D3Fv9eK36A0znDOXPzuKH30ceBArsAksADIWrhPH5AucB5qz5FGqHP5IijI3mJYiR2Kev0FgwFIlPlYP1XtABLM-s5CFY_Lsz6fLq3lw1y6iCZLSK0a69VtW8O9bbZHet_mjdIczzm</recordid><startdate>20240223</startdate><enddate>20240223</enddate><creator>LI GUANGQIANG</creator><creator>HE ZHU</creator><creator>CHAUAIDA</creator><creator>LIU CHANG</creator><creator>WANG QIANG</creator><creator>LIU XIAOHANG</creator><scope>EVB</scope></search><sort><creationdate>20240223</creationdate><title>Refining ladle slag entrapment prediction method and system adopting regression decision tree</title><author>LI GUANGQIANG ; HE ZHU ; CHAUAIDA ; LIU CHANG ; WANG QIANG ; LIU XIAOHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117593254A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI GUANGQIANG</creatorcontrib><creatorcontrib>HE ZHU</creatorcontrib><creatorcontrib>CHAUAIDA</creatorcontrib><creatorcontrib>LIU CHANG</creatorcontrib><creatorcontrib>WANG QIANG</creatorcontrib><creatorcontrib>LIU XIAOHANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI GUANGQIANG</au><au>HE ZHU</au><au>CHAUAIDA</au><au>LIU CHANG</au><au>WANG QIANG</au><au>LIU XIAOHANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Refining ladle slag entrapment prediction method and system adopting regression decision tree</title><date>2024-02-23</date><risdate>2024</risdate><abstract>The invention discloses a refining ladle slag entrapment prediction method and system adopting a regression decision tree. The method comprises the following steps: firstly, collecting refining data in the ladle bottom blowing refining process, then preprocessing the refining data, and inputting the preprocessed data into a machine learning regression decision tree model for training and prediction to obtain a prediction result. According to the method, a refining steel ladle structure is converted into a corresponding machine learning special structure, unnecessary interaction and coupling are avoided, network parameters with similar characteristics are reused, information of a steel ladle refining physical principle is introduced, dependence of a model on a sample is greatly reduced, and the method is suitable for large-scale popularization and application. And the modeling, training and learning efficiency and the model application success rate of the decision tree model can be remarkably improved. A decis</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117593254A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Refining ladle slag entrapment prediction method and system adopting regression decision tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20GUANGQIANG&rft.date=2024-02-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117593254A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true