Flow field prediction method and system
The invention provides a flow field prediction method and system, and relates to the technical field of fluid mechanics, and the method comprises the steps: obtaining corresponding flow field data of a research object under different geometric shapes and working conditions, and constructing a flow f...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN MING HUANG RUOYI DING QIANXUE YIN SHUWEI PEI JUAN DU FENGLEI QIU ZHILIANG LI XIAOFENG HONG YUN OU YANG CHEN GUODONG ZHANG YI CHENG SHUO ZHOU JINGYI HUANG CHENGPENG HUANG MINGQUAN ZHANG LEI WANG XINGYUE CAO JUAN LI JIN ZHAI LIANG FU XIAOCHENG GU JUNJIE ZHU YI KANG YIBO WANG JUN XIAN HAOYANG PU XIANG JIANG HAOYU WANG XUE |
description | The invention provides a flow field prediction method and system, and relates to the technical field of fluid mechanics, and the method comprises the steps: obtaining corresponding flow field data of a research object under different geometric shapes and working conditions, and constructing a flow field data set; converting the flow field data in the flow field data set into a storage structure based on a grid topology connection diagram; establishing a flow field prediction model based on a graph convolutional neural network, and training the flow field prediction model by using the converted flow field data set; and inputting geometric parameters and working condition parameters to be predicted, and performing flow field prediction by using the flow field prediction model. According to the method, the information of the grid topology connection and the characteristics of variable geometry and variable working conditions are combined, and the flow field can be quickly predicted under the variable geometry an |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117556725A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117556725A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117556725A3</originalsourceid><addsrcrecordid>eNrjZFB3y8kvV0jLTM1JUSgoSk3JTC7JzM9TyE0tychPUUjMS1EoriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhuampmbmRqaOxsSoAQCU5ifi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Flow field prediction method and system</title><source>esp@cenet</source><creator>CHEN MING ; HUANG RUOYI ; DING QIANXUE ; YIN SHUWEI ; PEI JUAN ; DU FENGLEI ; QIU ZHILIANG ; LI XIAOFENG ; HONG YUN ; OU YANG ; CHEN GUODONG ; ZHANG YI ; CHENG SHUO ; ZHOU JINGYI ; HUANG CHENGPENG ; HUANG MINGQUAN ; ZHANG LEI ; WANG XINGYUE ; CAO JUAN ; LI JIN ; ZHAI LIANG ; FU XIAOCHENG ; GU JUNJIE ; ZHU YI ; KANG YIBO ; WANG JUN ; XIAN HAOYANG ; PU XIANG ; JIANG HAOYU ; WANG XUE</creator><creatorcontrib>CHEN MING ; HUANG RUOYI ; DING QIANXUE ; YIN SHUWEI ; PEI JUAN ; DU FENGLEI ; QIU ZHILIANG ; LI XIAOFENG ; HONG YUN ; OU YANG ; CHEN GUODONG ; ZHANG YI ; CHENG SHUO ; ZHOU JINGYI ; HUANG CHENGPENG ; HUANG MINGQUAN ; ZHANG LEI ; WANG XINGYUE ; CAO JUAN ; LI JIN ; ZHAI LIANG ; FU XIAOCHENG ; GU JUNJIE ; ZHU YI ; KANG YIBO ; WANG JUN ; XIAN HAOYANG ; PU XIANG ; JIANG HAOYU ; WANG XUE</creatorcontrib><description>The invention provides a flow field prediction method and system, and relates to the technical field of fluid mechanics, and the method comprises the steps: obtaining corresponding flow field data of a research object under different geometric shapes and working conditions, and constructing a flow field data set; converting the flow field data in the flow field data set into a storage structure based on a grid topology connection diagram; establishing a flow field prediction model based on a graph convolutional neural network, and training the flow field prediction model by using the converted flow field data set; and inputting geometric parameters and working condition parameters to be predicted, and performing flow field prediction by using the flow field prediction model. According to the method, the information of the grid topology connection and the characteristics of variable geometry and variable working conditions are combined, and the flow field can be quickly predicted under the variable geometry an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240213&DB=EPODOC&CC=CN&NR=117556725A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240213&DB=EPODOC&CC=CN&NR=117556725A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN MING</creatorcontrib><creatorcontrib>HUANG RUOYI</creatorcontrib><creatorcontrib>DING QIANXUE</creatorcontrib><creatorcontrib>YIN SHUWEI</creatorcontrib><creatorcontrib>PEI JUAN</creatorcontrib><creatorcontrib>DU FENGLEI</creatorcontrib><creatorcontrib>QIU ZHILIANG</creatorcontrib><creatorcontrib>LI XIAOFENG</creatorcontrib><creatorcontrib>HONG YUN</creatorcontrib><creatorcontrib>OU YANG</creatorcontrib><creatorcontrib>CHEN GUODONG</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>CHENG SHUO</creatorcontrib><creatorcontrib>ZHOU JINGYI</creatorcontrib><creatorcontrib>HUANG CHENGPENG</creatorcontrib><creatorcontrib>HUANG MINGQUAN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>WANG XINGYUE</creatorcontrib><creatorcontrib>CAO JUAN</creatorcontrib><creatorcontrib>LI JIN</creatorcontrib><creatorcontrib>ZHAI LIANG</creatorcontrib><creatorcontrib>FU XIAOCHENG</creatorcontrib><creatorcontrib>GU JUNJIE</creatorcontrib><creatorcontrib>ZHU YI</creatorcontrib><creatorcontrib>KANG YIBO</creatorcontrib><creatorcontrib>WANG JUN</creatorcontrib><creatorcontrib>XIAN HAOYANG</creatorcontrib><creatorcontrib>PU XIANG</creatorcontrib><creatorcontrib>JIANG HAOYU</creatorcontrib><creatorcontrib>WANG XUE</creatorcontrib><title>Flow field prediction method and system</title><description>The invention provides a flow field prediction method and system, and relates to the technical field of fluid mechanics, and the method comprises the steps: obtaining corresponding flow field data of a research object under different geometric shapes and working conditions, and constructing a flow field data set; converting the flow field data in the flow field data set into a storage structure based on a grid topology connection diagram; establishing a flow field prediction model based on a graph convolutional neural network, and training the flow field prediction model by using the converted flow field data set; and inputting geometric parameters and working condition parameters to be predicted, and performing flow field prediction by using the flow field prediction model. According to the method, the information of the grid topology connection and the characteristics of variable geometry and variable working conditions are combined, and the flow field can be quickly predicted under the variable geometry an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3y8kvV0jLTM1JUSgoSk3JTC7JzM9TyE0tychPUUjMS1EoriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhuampmbmRqaOxsSoAQCU5ifi</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>CHEN MING</creator><creator>HUANG RUOYI</creator><creator>DING QIANXUE</creator><creator>YIN SHUWEI</creator><creator>PEI JUAN</creator><creator>DU FENGLEI</creator><creator>QIU ZHILIANG</creator><creator>LI XIAOFENG</creator><creator>HONG YUN</creator><creator>OU YANG</creator><creator>CHEN GUODONG</creator><creator>ZHANG YI</creator><creator>CHENG SHUO</creator><creator>ZHOU JINGYI</creator><creator>HUANG CHENGPENG</creator><creator>HUANG MINGQUAN</creator><creator>ZHANG LEI</creator><creator>WANG XINGYUE</creator><creator>CAO JUAN</creator><creator>LI JIN</creator><creator>ZHAI LIANG</creator><creator>FU XIAOCHENG</creator><creator>GU JUNJIE</creator><creator>ZHU YI</creator><creator>KANG YIBO</creator><creator>WANG JUN</creator><creator>XIAN HAOYANG</creator><creator>PU XIANG</creator><creator>JIANG HAOYU</creator><creator>WANG XUE</creator><scope>EVB</scope></search><sort><creationdate>20240213</creationdate><title>Flow field prediction method and system</title><author>CHEN MING ; HUANG RUOYI ; DING QIANXUE ; YIN SHUWEI ; PEI JUAN ; DU FENGLEI ; QIU ZHILIANG ; LI XIAOFENG ; HONG YUN ; OU YANG ; CHEN GUODONG ; ZHANG YI ; CHENG SHUO ; ZHOU JINGYI ; HUANG CHENGPENG ; HUANG MINGQUAN ; ZHANG LEI ; WANG XINGYUE ; CAO JUAN ; LI JIN ; ZHAI LIANG ; FU XIAOCHENG ; GU JUNJIE ; ZHU YI ; KANG YIBO ; WANG JUN ; XIAN HAOYANG ; PU XIANG ; JIANG HAOYU ; WANG XUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117556725A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN MING</creatorcontrib><creatorcontrib>HUANG RUOYI</creatorcontrib><creatorcontrib>DING QIANXUE</creatorcontrib><creatorcontrib>YIN SHUWEI</creatorcontrib><creatorcontrib>PEI JUAN</creatorcontrib><creatorcontrib>DU FENGLEI</creatorcontrib><creatorcontrib>QIU ZHILIANG</creatorcontrib><creatorcontrib>LI XIAOFENG</creatorcontrib><creatorcontrib>HONG YUN</creatorcontrib><creatorcontrib>OU YANG</creatorcontrib><creatorcontrib>CHEN GUODONG</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>CHENG SHUO</creatorcontrib><creatorcontrib>ZHOU JINGYI</creatorcontrib><creatorcontrib>HUANG CHENGPENG</creatorcontrib><creatorcontrib>HUANG MINGQUAN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>WANG XINGYUE</creatorcontrib><creatorcontrib>CAO JUAN</creatorcontrib><creatorcontrib>LI JIN</creatorcontrib><creatorcontrib>ZHAI LIANG</creatorcontrib><creatorcontrib>FU XIAOCHENG</creatorcontrib><creatorcontrib>GU JUNJIE</creatorcontrib><creatorcontrib>ZHU YI</creatorcontrib><creatorcontrib>KANG YIBO</creatorcontrib><creatorcontrib>WANG JUN</creatorcontrib><creatorcontrib>XIAN HAOYANG</creatorcontrib><creatorcontrib>PU XIANG</creatorcontrib><creatorcontrib>JIANG HAOYU</creatorcontrib><creatorcontrib>WANG XUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN MING</au><au>HUANG RUOYI</au><au>DING QIANXUE</au><au>YIN SHUWEI</au><au>PEI JUAN</au><au>DU FENGLEI</au><au>QIU ZHILIANG</au><au>LI XIAOFENG</au><au>HONG YUN</au><au>OU YANG</au><au>CHEN GUODONG</au><au>ZHANG YI</au><au>CHENG SHUO</au><au>ZHOU JINGYI</au><au>HUANG CHENGPENG</au><au>HUANG MINGQUAN</au><au>ZHANG LEI</au><au>WANG XINGYUE</au><au>CAO JUAN</au><au>LI JIN</au><au>ZHAI LIANG</au><au>FU XIAOCHENG</au><au>GU JUNJIE</au><au>ZHU YI</au><au>KANG YIBO</au><au>WANG JUN</au><au>XIAN HAOYANG</au><au>PU XIANG</au><au>JIANG HAOYU</au><au>WANG XUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Flow field prediction method and system</title><date>2024-02-13</date><risdate>2024</risdate><abstract>The invention provides a flow field prediction method and system, and relates to the technical field of fluid mechanics, and the method comprises the steps: obtaining corresponding flow field data of a research object under different geometric shapes and working conditions, and constructing a flow field data set; converting the flow field data in the flow field data set into a storage structure based on a grid topology connection diagram; establishing a flow field prediction model based on a graph convolutional neural network, and training the flow field prediction model by using the converted flow field data set; and inputting geometric parameters and working condition parameters to be predicted, and performing flow field prediction by using the flow field prediction model. According to the method, the information of the grid topology connection and the characteristics of variable geometry and variable working conditions are combined, and the flow field can be quickly predicted under the variable geometry an</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117556725A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Flow field prediction method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20MING&rft.date=2024-02-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117556725A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |