Steel surface defect detection method based on improved YOLOv5

The invention discloses a steel surface defect detection method based on improved YOLOv5, and the method comprises the steps: collecting a steel surface defect data set, and carrying out the preprocessing of the data set; secondly, an original YOLOv5 model is improved, and an ECA attention mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MAO HAOJIE, JIA MINGZHENG, GONG YONGWANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MAO HAOJIE
JIA MINGZHENG
GONG YONGWANG
description The invention discloses a steel surface defect detection method based on improved YOLOv5, and the method comprises the steps: collecting a steel surface defect data set, and carrying out the preprocessing of the data set; secondly, an original YOLOv5 model is improved, and an ECA attention mechanism is introduced into a backbone network and a neck network of an original YOLOv5 network; feature fusion layers in all C3 modules in the original YOLOv5 model are replaced with an SPP layer and a cross-stage residual connection layer in a C2F module, and meanwhile, the number of original output channels is set as the number of output channels of the C2F module, so that the small target detection precision of the model is improved; adjusting and optimizing a spatial pyramid pooling structure; thirdly, training parameters are set, and the improved YOLOv5 model is trained; and finally, inputting to-be-detected steel surface defect data into the trained model, and outputting position and category information of the to-b
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117541553A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117541553A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117541553A3</originalsourceid><addsrcrecordid>eNrjZLALLklNzVEoLi1KS0xOVUhJTUtNLgFSJUAqMz9PITe1JCM_RSEpsTg1RQHIz8wtKMovA7Ij_X38y0x5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcQHQzLzUknhnP0NDc1MTQ1NTY0djYtQAABn-L-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Steel surface defect detection method based on improved YOLOv5</title><source>esp@cenet</source><creator>MAO HAOJIE ; JIA MINGZHENG ; GONG YONGWANG</creator><creatorcontrib>MAO HAOJIE ; JIA MINGZHENG ; GONG YONGWANG</creatorcontrib><description>The invention discloses a steel surface defect detection method based on improved YOLOv5, and the method comprises the steps: collecting a steel surface defect data set, and carrying out the preprocessing of the data set; secondly, an original YOLOv5 model is improved, and an ECA attention mechanism is introduced into a backbone network and a neck network of an original YOLOv5 network; feature fusion layers in all C3 modules in the original YOLOv5 model are replaced with an SPP layer and a cross-stage residual connection layer in a C2F module, and meanwhile, the number of original output channels is set as the number of output channels of the C2F module, so that the small target detection precision of the model is improved; adjusting and optimizing a spatial pyramid pooling structure; thirdly, training parameters are set, and the improved YOLOv5 model is trained; and finally, inputting to-be-detected steel surface defect data into the trained model, and outputting position and category information of the to-b</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240209&amp;DB=EPODOC&amp;CC=CN&amp;NR=117541553A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240209&amp;DB=EPODOC&amp;CC=CN&amp;NR=117541553A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAO HAOJIE</creatorcontrib><creatorcontrib>JIA MINGZHENG</creatorcontrib><creatorcontrib>GONG YONGWANG</creatorcontrib><title>Steel surface defect detection method based on improved YOLOv5</title><description>The invention discloses a steel surface defect detection method based on improved YOLOv5, and the method comprises the steps: collecting a steel surface defect data set, and carrying out the preprocessing of the data set; secondly, an original YOLOv5 model is improved, and an ECA attention mechanism is introduced into a backbone network and a neck network of an original YOLOv5 network; feature fusion layers in all C3 modules in the original YOLOv5 model are replaced with an SPP layer and a cross-stage residual connection layer in a C2F module, and meanwhile, the number of original output channels is set as the number of output channels of the C2F module, so that the small target detection precision of the model is improved; adjusting and optimizing a spatial pyramid pooling structure; thirdly, training parameters are set, and the improved YOLOv5 model is trained; and finally, inputting to-be-detected steel surface defect data into the trained model, and outputting position and category information of the to-b</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALLklNzVEoLi1KS0xOVUhJTUtNLgFSJUAqMz9PITe1JCM_RSEpsTg1RQHIz8wtKMovA7Ij_X38y0x5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcQHQzLzUknhnP0NDc1MTQ1NTY0djYtQAABn-L-Y</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>MAO HAOJIE</creator><creator>JIA MINGZHENG</creator><creator>GONG YONGWANG</creator><scope>EVB</scope></search><sort><creationdate>20240209</creationdate><title>Steel surface defect detection method based on improved YOLOv5</title><author>MAO HAOJIE ; JIA MINGZHENG ; GONG YONGWANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117541553A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MAO HAOJIE</creatorcontrib><creatorcontrib>JIA MINGZHENG</creatorcontrib><creatorcontrib>GONG YONGWANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAO HAOJIE</au><au>JIA MINGZHENG</au><au>GONG YONGWANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Steel surface defect detection method based on improved YOLOv5</title><date>2024-02-09</date><risdate>2024</risdate><abstract>The invention discloses a steel surface defect detection method based on improved YOLOv5, and the method comprises the steps: collecting a steel surface defect data set, and carrying out the preprocessing of the data set; secondly, an original YOLOv5 model is improved, and an ECA attention mechanism is introduced into a backbone network and a neck network of an original YOLOv5 network; feature fusion layers in all C3 modules in the original YOLOv5 model are replaced with an SPP layer and a cross-stage residual connection layer in a C2F module, and meanwhile, the number of original output channels is set as the number of output channels of the C2F module, so that the small target detection precision of the model is improved; adjusting and optimizing a spatial pyramid pooling structure; thirdly, training parameters are set, and the improved YOLOv5 model is trained; and finally, inputting to-be-detected steel surface defect data into the trained model, and outputting position and category information of the to-b</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117541553A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Steel surface defect detection method based on improved YOLOv5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAO%20HAOJIE&rft.date=2024-02-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117541553A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true