Lymphoma PET-CT fusion segmentation method based on small target position probability

The invention discloses a lymphoma PET-CT fusion segmentation method based on small target position probability, and the method comprises the steps: preheating an organ segmentation network of a CT image, and freezing the network after preheating; generating a random learnable parameter as a general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU QIANWEI, REN NANYIN, SU YIPING, GUAN QIU, HU HAIGEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU QIANWEI
REN NANYIN
SU YIPING
GUAN QIU
HU HAIGEN
description The invention discloses a lymphoma PET-CT fusion segmentation method based on small target position probability, and the method comprises the steps: preheating an organ segmentation network of a CT image, and freezing the network after preheating; generating a random learnable parameter as a general lymphoma position prototype, combining the position prototype with the predicted organ mask of the frozen part, and generating a position prototype emphasizing small target lymphoma and a position prototype constraining an interference target; a new nn-UNet convolutional network is initialized to segment the whole body lymphoma, and the small target lymphoma position prototype and the interference target position prototype assist the 3D PET input image to segment the whole body lymphoma; and the nn-UNet convolutional neural network is used for carrying out segmentation by using a combined loss formed by Dice loss and Cross-Entropy Loss. According to the invention, the performance of automatic segmentation of syste
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117522899A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117522899A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117522899A3</originalsourceid><addsrcrecordid>eNrjZAj1qcwtyMjPTVQIcA3RdQ5RSCstzszPUyhOTc9NzStJLAFxclNLMvJTFJISi1NTFECSuYk5OQoliUXpqSUKBfnFmWBVBUX5SYlJmTmZJZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NzUyMjC0tLRmBg1ALrDOT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lymphoma PET-CT fusion segmentation method based on small target position probability</title><source>esp@cenet</source><creator>ZHOU QIANWEI ; REN NANYIN ; SU YIPING ; GUAN QIU ; HU HAIGEN</creator><creatorcontrib>ZHOU QIANWEI ; REN NANYIN ; SU YIPING ; GUAN QIU ; HU HAIGEN</creatorcontrib><description>The invention discloses a lymphoma PET-CT fusion segmentation method based on small target position probability, and the method comprises the steps: preheating an organ segmentation network of a CT image, and freezing the network after preheating; generating a random learnable parameter as a general lymphoma position prototype, combining the position prototype with the predicted organ mask of the frozen part, and generating a position prototype emphasizing small target lymphoma and a position prototype constraining an interference target; a new nn-UNet convolutional network is initialized to segment the whole body lymphoma, and the small target lymphoma position prototype and the interference target position prototype assist the 3D PET input image to segment the whole body lymphoma; and the nn-UNet convolutional neural network is used for carrying out segmentation by using a combined loss formed by Dice loss and Cross-Entropy Loss. According to the invention, the performance of automatic segmentation of syste</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240206&amp;DB=EPODOC&amp;CC=CN&amp;NR=117522899A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240206&amp;DB=EPODOC&amp;CC=CN&amp;NR=117522899A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU QIANWEI</creatorcontrib><creatorcontrib>REN NANYIN</creatorcontrib><creatorcontrib>SU YIPING</creatorcontrib><creatorcontrib>GUAN QIU</creatorcontrib><creatorcontrib>HU HAIGEN</creatorcontrib><title>Lymphoma PET-CT fusion segmentation method based on small target position probability</title><description>The invention discloses a lymphoma PET-CT fusion segmentation method based on small target position probability, and the method comprises the steps: preheating an organ segmentation network of a CT image, and freezing the network after preheating; generating a random learnable parameter as a general lymphoma position prototype, combining the position prototype with the predicted organ mask of the frozen part, and generating a position prototype emphasizing small target lymphoma and a position prototype constraining an interference target; a new nn-UNet convolutional network is initialized to segment the whole body lymphoma, and the small target lymphoma position prototype and the interference target position prototype assist the 3D PET input image to segment the whole body lymphoma; and the nn-UNet convolutional neural network is used for carrying out segmentation by using a combined loss formed by Dice loss and Cross-Entropy Loss. According to the invention, the performance of automatic segmentation of syste</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj1qcwtyMjPTVQIcA3RdQ5RSCstzszPUyhOTc9NzStJLAFxclNLMvJTFJISi1NTFECSuYk5OQoliUXpqSUKBfnFmWBVBUX5SYlJmTmZJZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NzUyMjC0tLRmBg1ALrDOT0</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>ZHOU QIANWEI</creator><creator>REN NANYIN</creator><creator>SU YIPING</creator><creator>GUAN QIU</creator><creator>HU HAIGEN</creator><scope>EVB</scope></search><sort><creationdate>20240206</creationdate><title>Lymphoma PET-CT fusion segmentation method based on small target position probability</title><author>ZHOU QIANWEI ; REN NANYIN ; SU YIPING ; GUAN QIU ; HU HAIGEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117522899A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU QIANWEI</creatorcontrib><creatorcontrib>REN NANYIN</creatorcontrib><creatorcontrib>SU YIPING</creatorcontrib><creatorcontrib>GUAN QIU</creatorcontrib><creatorcontrib>HU HAIGEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU QIANWEI</au><au>REN NANYIN</au><au>SU YIPING</au><au>GUAN QIU</au><au>HU HAIGEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lymphoma PET-CT fusion segmentation method based on small target position probability</title><date>2024-02-06</date><risdate>2024</risdate><abstract>The invention discloses a lymphoma PET-CT fusion segmentation method based on small target position probability, and the method comprises the steps: preheating an organ segmentation network of a CT image, and freezing the network after preheating; generating a random learnable parameter as a general lymphoma position prototype, combining the position prototype with the predicted organ mask of the frozen part, and generating a position prototype emphasizing small target lymphoma and a position prototype constraining an interference target; a new nn-UNet convolutional network is initialized to segment the whole body lymphoma, and the small target lymphoma position prototype and the interference target position prototype assist the 3D PET input image to segment the whole body lymphoma; and the nn-UNet convolutional neural network is used for carrying out segmentation by using a combined loss formed by Dice loss and Cross-Entropy Loss. According to the invention, the performance of automatic segmentation of syste</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117522899A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Lymphoma PET-CT fusion segmentation method based on small target position probability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20QIANWEI&rft.date=2024-02-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117522899A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true