Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device

The invention provides a chiral super-structure surface structure parameter optimization model training method, an intelligent agent and a device, and the method comprises the steps: training a chiral super-structure surface structure parameter optimization model based on a near-end strategy optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUI LILI, LIAO XIANGLAI, XU KUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUI LILI
LIAO XIANGLAI
XU KUN
description The invention provides a chiral super-structure surface structure parameter optimization model training method, an intelligent agent and a device, and the method comprises the steps: training a chiral super-structure surface structure parameter optimization model based on a near-end strategy optimization (PPO) algorithm in a reinforcement learning algorithm, and transmitting an output action of the structure parameter optimization model to an environment in a Markov decision system, enabling the forward prediction neural network in the environment to output a spectral response, calculating an award according to the spectral response, and receiving a next observation state and a new award to iteratively train the structure parameter optimization model again. According to the method and the device, the response speed of the interaction environment can be effectively improved on the basis of ensuring the optimization accuracy of the structure parameters of the chiral super-structure surface, so that the efficien
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117494487A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117494487A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117494487A3</originalsourceid><addsrcrecordid>eNqNjbEKwkAQRNNYiPoPa2-KYCBaSlCsrOzDktskC5e9Y29j4dcbUaxt5sHwmFlmWg-s6GEkwzyZTq1NSpAm7bCd-WsiKs4SKYRoPPITjYPAGBx5MEUWlv49MwS3AxYj77knMcBPigNHD25pnS069Ik2X66y7eV8r685xdBQivOvkDX1rSiq8liWh-q0_8d5AaAqRTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device</title><source>esp@cenet</source><creator>GUI LILI ; LIAO XIANGLAI ; XU KUN</creator><creatorcontrib>GUI LILI ; LIAO XIANGLAI ; XU KUN</creatorcontrib><description>The invention provides a chiral super-structure surface structure parameter optimization model training method, an intelligent agent and a device, and the method comprises the steps: training a chiral super-structure surface structure parameter optimization model based on a near-end strategy optimization (PPO) algorithm in a reinforcement learning algorithm, and transmitting an output action of the structure parameter optimization model to an environment in a Markov decision system, enabling the forward prediction neural network in the environment to output a spectral response, calculating an award according to the spectral response, and receiving a next observation state and a new award to iteratively train the structure parameter optimization model again. According to the method and the device, the response speed of the interaction environment can be effectively improved on the basis of ensuring the optimization accuracy of the structure parameters of the chiral super-structure surface, so that the efficien</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240202&amp;DB=EPODOC&amp;CC=CN&amp;NR=117494487A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240202&amp;DB=EPODOC&amp;CC=CN&amp;NR=117494487A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUI LILI</creatorcontrib><creatorcontrib>LIAO XIANGLAI</creatorcontrib><creatorcontrib>XU KUN</creatorcontrib><title>Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device</title><description>The invention provides a chiral super-structure surface structure parameter optimization model training method, an intelligent agent and a device, and the method comprises the steps: training a chiral super-structure surface structure parameter optimization model based on a near-end strategy optimization (PPO) algorithm in a reinforcement learning algorithm, and transmitting an output action of the structure parameter optimization model to an environment in a Markov decision system, enabling the forward prediction neural network in the environment to output a spectral response, calculating an award according to the spectral response, and receiving a next observation state and a new award to iteratively train the structure parameter optimization model again. According to the method and the device, the response speed of the interaction environment can be effectively improved on the basis of ensuring the optimization accuracy of the structure parameters of the chiral super-structure surface, so that the efficien</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEKwkAQRNNYiPoPa2-KYCBaSlCsrOzDktskC5e9Y29j4dcbUaxt5sHwmFlmWg-s6GEkwzyZTq1NSpAm7bCd-WsiKs4SKYRoPPITjYPAGBx5MEUWlv49MwS3AxYj77knMcBPigNHD25pnS069Ik2X66y7eV8r685xdBQivOvkDX1rSiq8liWh-q0_8d5AaAqRTg</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>GUI LILI</creator><creator>LIAO XIANGLAI</creator><creator>XU KUN</creator><scope>EVB</scope></search><sort><creationdate>20240202</creationdate><title>Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device</title><author>GUI LILI ; LIAO XIANGLAI ; XU KUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117494487A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUI LILI</creatorcontrib><creatorcontrib>LIAO XIANGLAI</creatorcontrib><creatorcontrib>XU KUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUI LILI</au><au>LIAO XIANGLAI</au><au>XU KUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device</title><date>2024-02-02</date><risdate>2024</risdate><abstract>The invention provides a chiral super-structure surface structure parameter optimization model training method, an intelligent agent and a device, and the method comprises the steps: training a chiral super-structure surface structure parameter optimization model based on a near-end strategy optimization (PPO) algorithm in a reinforcement learning algorithm, and transmitting an output action of the structure parameter optimization model to an environment in a Markov decision system, enabling the forward prediction neural network in the environment to output a spectral response, calculating an award according to the spectral response, and receiving a next observation state and a new award to iteratively train the structure parameter optimization model again. According to the method and the device, the response speed of the interaction environment can be effectively improved on the basis of ensuring the optimization accuracy of the structure parameters of the chiral super-structure surface, so that the efficien</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117494487A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Chiral meta-structure surface structure parameter optimization model training method, intelligent agent and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUI%20LILI&rft.date=2024-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117494487A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true