Automatic pulmonary metastatic tumor diagnosis system based on deep learning model

The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU JIAHUI, ZHOU JIANYAO, XIE CHUANMIAO, MAI ZHIJUN, WANG DELING, ZHANG RONG, YANG QIUXIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU JIAHUI
ZHOU JIANYAO
XIE CHUANMIAO
MAI ZHIJUN
WANG DELING
ZHANG RONG
YANG QIUXIA
description The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117476212A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117476212A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117476212A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w_kADqli51IUJwdxL2dzlkByF3KXoW8viA_g9MPHv24efTVJaGGCXGMSxrJAIkO1L1pNUsAHnFk0KOiiRgleqORBGDxRhkhYOPAMSTzFbbN6Y1Ta_bpp9tfLc7gdKMtImnEiJhuHu3PdqTu3ru2P_zwffXk4rA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><source>esp@cenet</source><creator>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</creator><creatorcontrib>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</creatorcontrib><description>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=CN&amp;NR=117476212A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=CN&amp;NR=117476212A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU JIAHUI</creatorcontrib><creatorcontrib>ZHOU JIANYAO</creatorcontrib><creatorcontrib>XIE CHUANMIAO</creatorcontrib><creatorcontrib>MAI ZHIJUN</creatorcontrib><creatorcontrib>WANG DELING</creatorcontrib><creatorcontrib>ZHANG RONG</creatorcontrib><creatorcontrib>YANG QIUXIA</creatorcontrib><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><description>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w_kADqli51IUJwdxL2dzlkByF3KXoW8viA_g9MPHv24efTVJaGGCXGMSxrJAIkO1L1pNUsAHnFk0KOiiRgleqORBGDxRhkhYOPAMSTzFbbN6Y1Ta_bpp9tfLc7gdKMtImnEiJhuHu3PdqTu3ru2P_zwffXk4rA</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>XU JIAHUI</creator><creator>ZHOU JIANYAO</creator><creator>XIE CHUANMIAO</creator><creator>MAI ZHIJUN</creator><creator>WANG DELING</creator><creator>ZHANG RONG</creator><creator>YANG QIUXIA</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><author>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117476212A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU JIAHUI</creatorcontrib><creatorcontrib>ZHOU JIANYAO</creatorcontrib><creatorcontrib>XIE CHUANMIAO</creatorcontrib><creatorcontrib>MAI ZHIJUN</creatorcontrib><creatorcontrib>WANG DELING</creatorcontrib><creatorcontrib>ZHANG RONG</creatorcontrib><creatorcontrib>YANG QIUXIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU JIAHUI</au><au>ZHOU JIANYAO</au><au>XIE CHUANMIAO</au><au>MAI ZHIJUN</au><au>WANG DELING</au><au>ZHANG RONG</au><au>YANG QIUXIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><date>2024-01-30</date><risdate>2024</risdate><abstract>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117476212A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Automatic pulmonary metastatic tumor diagnosis system based on deep learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20JIAHUI&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117476212A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true