Automatic pulmonary metastatic tumor diagnosis system based on deep learning model
The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU JIAHUI ZHOU JIANYAO XIE CHUANMIAO MAI ZHIJUN WANG DELING ZHANG RONG YANG QIUXIA |
description | The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117476212A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117476212A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117476212A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w_kADqli51IUJwdxL2dzlkByF3KXoW8viA_g9MPHv24efTVJaGGCXGMSxrJAIkO1L1pNUsAHnFk0KOiiRgleqORBGDxRhkhYOPAMSTzFbbN6Y1Ta_bpp9tfLc7gdKMtImnEiJhuHu3PdqTu3ru2P_zwffXk4rA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><source>esp@cenet</source><creator>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</creator><creatorcontrib>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</creatorcontrib><description>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=CN&NR=117476212A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=CN&NR=117476212A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU JIAHUI</creatorcontrib><creatorcontrib>ZHOU JIANYAO</creatorcontrib><creatorcontrib>XIE CHUANMIAO</creatorcontrib><creatorcontrib>MAI ZHIJUN</creatorcontrib><creatorcontrib>WANG DELING</creatorcontrib><creatorcontrib>ZHANG RONG</creatorcontrib><creatorcontrib>YANG QIUXIA</creatorcontrib><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><description>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w_kADqli51IUJwdxL2dzlkByF3KXoW8viA_g9MPHv24efTVJaGGCXGMSxrJAIkO1L1pNUsAHnFk0KOiiRgleqORBGDxRhkhYOPAMSTzFbbN6Y1Ta_bpp9tfLc7gdKMtImnEiJhuHu3PdqTu3ru2P_zwffXk4rA</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>XU JIAHUI</creator><creator>ZHOU JIANYAO</creator><creator>XIE CHUANMIAO</creator><creator>MAI ZHIJUN</creator><creator>WANG DELING</creator><creator>ZHANG RONG</creator><creator>YANG QIUXIA</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><author>XU JIAHUI ; ZHOU JIANYAO ; XIE CHUANMIAO ; MAI ZHIJUN ; WANG DELING ; ZHANG RONG ; YANG QIUXIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117476212A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU JIAHUI</creatorcontrib><creatorcontrib>ZHOU JIANYAO</creatorcontrib><creatorcontrib>XIE CHUANMIAO</creatorcontrib><creatorcontrib>MAI ZHIJUN</creatorcontrib><creatorcontrib>WANG DELING</creatorcontrib><creatorcontrib>ZHANG RONG</creatorcontrib><creatorcontrib>YANG QIUXIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU JIAHUI</au><au>ZHOU JIANYAO</au><au>XIE CHUANMIAO</au><au>MAI ZHIJUN</au><au>WANG DELING</au><au>ZHANG RONG</au><au>YANG QIUXIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic pulmonary metastatic tumor diagnosis system based on deep learning model</title><date>2024-01-30</date><risdate>2024</risdate><abstract>The invention discloses a pulmonary metastatic tumor automatic diagnosis system based on a deep learning model, and the system comprises an image obtaining module which is used for obtaining a to-be-diagnosed chest CT image corresponding to a patient; the probability value generation module is used for inputting the chest CT image to be diagnosed into a preset pulmonary metastatic tumor diagnosis model, so that the pulmonary metastatic tumor diagnosis model marks and classifies corresponding nodule areas in the chest CT image to be diagnosed and generates a probability value that each nodule area is a metastatic tumor; and the diagnosis result generation module is used for generating a pulmonary metastatic tumor diagnosis result of the patient according to the probability value of the metastatic tumor of each nodule region. Compared with the prior art, the method has the advantages that the pulmonary nodules of the chest CT image to be diagnosed can be automatically recognized through the pre-trained model, a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117476212A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA IMAGE DATA PROCESSING OR GENERATION, IN GENERAL INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Automatic pulmonary metastatic tumor diagnosis system based on deep learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20JIAHUI&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117476212A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |