Aircraft neural network classification and autoregressive moving average model fault prediction method

The invention relates to an aircraft neural network classification and autoregressive moving average model fault prediction method. Comprising a principal component analysis feature extraction module, a random forest signal classification module and an autoregression moving average prediction module...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI PENGJIAO, KAN YAN, YANG SHUNKUN, LI KE, CHEN XIAODAN, PANG LIPING, WU HAOPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI PENGJIAO
KAN YAN
YANG SHUNKUN
LI KE
CHEN XIAODAN
PANG LIPING
WU HAOPENG
description The invention relates to an aircraft neural network classification and autoregressive moving average model fault prediction method. Comprising a principal component analysis feature extraction module, a random forest signal classification module and an autoregression moving average prediction module. When the electric signals of the aircraft are classified and predicted (101), firstly, data acquisition (102) is performed, then the data are preprocessed (103), and feature extraction is performed on the preprocessed data through a PCA method (104) to obtain feature vectors (105). And (107) voting is completed on the obtained feature vectors through a random forest algorithm (106), each feature vector can be labeled (109), each labeled data set is predicted through an ARMA algorithm (110), a prediction result is obtained (111), and the algorithm is ended (112). 本发明涉及一种飞行器神经元网络分类与自回归滑动平均模型故障预测方法。包括:主成分分析特征提取模块,随机森林信号分类模块和自回归滑动平均预测模块。当飞行器电信号进行分类与预测时(101),首先进行数据采集(102),然后对数据进行预处理(103),将完成预处理的数据通过PCA方法进行特征提取(104),得到
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117473419A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117473419A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117473419A3</originalsourceid><addsrcrecordid>eNqNjU0KwjAQhbtxIeodxgO4CC0Ul6VUXLlyX4ZkUoNpEiY_Xt8oHsDVx-N9j7dt9GBYMuoEjjKjrUgvz0-QFmM02khMxjtApwBz8kwLUy0KweqLcQtgIcblExVZ0JhtgsCkjPwOV0oPr_bNRqONdPhx1xwv0328nij4mWJASfV4Hm9C9F3fduI8tP84bwzkQLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Aircraft neural network classification and autoregressive moving average model fault prediction method</title><source>esp@cenet</source><creator>LI PENGJIAO ; KAN YAN ; YANG SHUNKUN ; LI KE ; CHEN XIAODAN ; PANG LIPING ; WU HAOPENG</creator><creatorcontrib>LI PENGJIAO ; KAN YAN ; YANG SHUNKUN ; LI KE ; CHEN XIAODAN ; PANG LIPING ; WU HAOPENG</creatorcontrib><description>The invention relates to an aircraft neural network classification and autoregressive moving average model fault prediction method. Comprising a principal component analysis feature extraction module, a random forest signal classification module and an autoregression moving average prediction module. When the electric signals of the aircraft are classified and predicted (101), firstly, data acquisition (102) is performed, then the data are preprocessed (103), and feature extraction is performed on the preprocessed data through a PCA method (104) to obtain feature vectors (105). And (107) voting is completed on the obtained feature vectors through a random forest algorithm (106), each feature vector can be labeled (109), each labeled data set is predicted through an ARMA algorithm (110), a prediction result is obtained (111), and the algorithm is ended (112). 本发明涉及一种飞行器神经元网络分类与自回归滑动平均模型故障预测方法。包括:主成分分析特征提取模块,随机森林信号分类模块和自回归滑动平均预测模块。当飞行器电信号进行分类与预测时(101),首先进行数据采集(102),然后对数据进行预处理(103),将完成预处理的数据通过PCA方法进行特征提取(104),得到</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=CN&amp;NR=117473419A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=CN&amp;NR=117473419A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENGJIAO</creatorcontrib><creatorcontrib>KAN YAN</creatorcontrib><creatorcontrib>YANG SHUNKUN</creatorcontrib><creatorcontrib>LI KE</creatorcontrib><creatorcontrib>CHEN XIAODAN</creatorcontrib><creatorcontrib>PANG LIPING</creatorcontrib><creatorcontrib>WU HAOPENG</creatorcontrib><title>Aircraft neural network classification and autoregressive moving average model fault prediction method</title><description>The invention relates to an aircraft neural network classification and autoregressive moving average model fault prediction method. Comprising a principal component analysis feature extraction module, a random forest signal classification module and an autoregression moving average prediction module. When the electric signals of the aircraft are classified and predicted (101), firstly, data acquisition (102) is performed, then the data are preprocessed (103), and feature extraction is performed on the preprocessed data through a PCA method (104) to obtain feature vectors (105). And (107) voting is completed on the obtained feature vectors through a random forest algorithm (106), each feature vector can be labeled (109), each labeled data set is predicted through an ARMA algorithm (110), a prediction result is obtained (111), and the algorithm is ended (112). 本发明涉及一种飞行器神经元网络分类与自回归滑动平均模型故障预测方法。包括:主成分分析特征提取模块,随机森林信号分类模块和自回归滑动平均预测模块。当飞行器电信号进行分类与预测时(101),首先进行数据采集(102),然后对数据进行预处理(103),将完成预处理的数据通过PCA方法进行特征提取(104),得到</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjU0KwjAQhbtxIeodxgO4CC0Ul6VUXLlyX4ZkUoNpEiY_Xt8oHsDVx-N9j7dt9GBYMuoEjjKjrUgvz0-QFmM02khMxjtApwBz8kwLUy0KweqLcQtgIcblExVZ0JhtgsCkjPwOV0oPr_bNRqONdPhx1xwv0328nij4mWJASfV4Hm9C9F3fduI8tP84bwzkQLU</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>LI PENGJIAO</creator><creator>KAN YAN</creator><creator>YANG SHUNKUN</creator><creator>LI KE</creator><creator>CHEN XIAODAN</creator><creator>PANG LIPING</creator><creator>WU HAOPENG</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Aircraft neural network classification and autoregressive moving average model fault prediction method</title><author>LI PENGJIAO ; KAN YAN ; YANG SHUNKUN ; LI KE ; CHEN XIAODAN ; PANG LIPING ; WU HAOPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117473419A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENGJIAO</creatorcontrib><creatorcontrib>KAN YAN</creatorcontrib><creatorcontrib>YANG SHUNKUN</creatorcontrib><creatorcontrib>LI KE</creatorcontrib><creatorcontrib>CHEN XIAODAN</creatorcontrib><creatorcontrib>PANG LIPING</creatorcontrib><creatorcontrib>WU HAOPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENGJIAO</au><au>KAN YAN</au><au>YANG SHUNKUN</au><au>LI KE</au><au>CHEN XIAODAN</au><au>PANG LIPING</au><au>WU HAOPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Aircraft neural network classification and autoregressive moving average model fault prediction method</title><date>2024-01-30</date><risdate>2024</risdate><abstract>The invention relates to an aircraft neural network classification and autoregressive moving average model fault prediction method. Comprising a principal component analysis feature extraction module, a random forest signal classification module and an autoregression moving average prediction module. When the electric signals of the aircraft are classified and predicted (101), firstly, data acquisition (102) is performed, then the data are preprocessed (103), and feature extraction is performed on the preprocessed data through a PCA method (104) to obtain feature vectors (105). And (107) voting is completed on the obtained feature vectors through a random forest algorithm (106), each feature vector can be labeled (109), each labeled data set is predicted through an ARMA algorithm (110), a prediction result is obtained (111), and the algorithm is ended (112). 本发明涉及一种飞行器神经元网络分类与自回归滑动平均模型故障预测方法。包括:主成分分析特征提取模块,随机森林信号分类模块和自回归滑动平均预测模块。当飞行器电信号进行分类与预测时(101),首先进行数据采集(102),然后对数据进行预处理(103),将完成预处理的数据通过PCA方法进行特征提取(104),得到</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117473419A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Aircraft neural network classification and autoregressive moving average model fault prediction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENGJIAO&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117473419A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true