Distributed power supply output sensing method combined with CNN neural network
The invention provides a distributed power supply output sensing method combined with a CNN (Convolutional Neural Network) neural network, which is characterized in that on the basis of a photovoltaic output decomposition method of minimum mutual information, distributed power supply output is decom...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HUANGFU WUJUN KOU QILONG JI ZHONGHAO ZHANG JIANGTAO PENG GANG DUAN XIAOCHEN ZHOU LEIYUE HUANG LEIFENG GENG XIN SHE YANJIE LIU YI ZHANG MINGKE KONG XIANGWEN WANG QING LIANG SHICHENG |
description | The invention provides a distributed power supply output sensing method combined with a CNN (Convolutional Neural Network) neural network, which is characterized in that on the basis of a photovoltaic output decomposition method of minimum mutual information, distributed power supply output is decomposed by further combining the CNN for a contradictory relationship between dynamic response and observation noise when photovoltaic capacity changes, and the distributed power supply output sensing method based on the CNN neural network is obtained. The method has high reliability and effectiveness under the conditions of different photovoltaic permeability and measurement noise, and can complete normal photovoltaic sensing and monitoring functions of the transformer area.
本发明提供一种结合CNN神经网络的分布式电源出力感知方法,其在最小互信息的光伏出力分解方法基础之上,针对光伏容量变化时的动态响应与观测噪声之间的矛盾关系,进一步结合CNN(Convolutional Neural Network)神经网络对分布式电源出力进行分解,本方法在不同光伏渗透率且有测量噪声情况下具有较高的可靠性和有效性,能够完成正常的台区光伏感知、监控功能。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117439076A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117439076A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117439076A3</originalsourceid><addsrcrecordid>eNqNyjEKwjAUANAsDqLe4XsAwVKxOEpUnOLiXtL21wbTJOT_ELy9GTyA01veUjwuhjiaLjEOEHzGCJRCsB_wiUNiIHRk3Atm5MkP0Pu5M67cbHgCqRQ4TFHbAmcf32uxGLUl3Pxcie3t-pT3HQbfIgXdY5mtVFXVHOrTvjme63_OF6mPN3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distributed power supply output sensing method combined with CNN neural network</title><source>esp@cenet</source><creator>HUANGFU WUJUN ; KOU QILONG ; JI ZHONGHAO ; ZHANG JIANGTAO ; PENG GANG ; DUAN XIAOCHEN ; ZHOU LEIYUE ; HUANG LEIFENG ; GENG XIN ; SHE YANJIE ; LIU YI ; ZHANG MINGKE ; KONG XIANGWEN ; WANG QING ; LIANG SHICHENG</creator><creatorcontrib>HUANGFU WUJUN ; KOU QILONG ; JI ZHONGHAO ; ZHANG JIANGTAO ; PENG GANG ; DUAN XIAOCHEN ; ZHOU LEIYUE ; HUANG LEIFENG ; GENG XIN ; SHE YANJIE ; LIU YI ; ZHANG MINGKE ; KONG XIANGWEN ; WANG QING ; LIANG SHICHENG</creatorcontrib><description>The invention provides a distributed power supply output sensing method combined with a CNN (Convolutional Neural Network) neural network, which is characterized in that on the basis of a photovoltaic output decomposition method of minimum mutual information, distributed power supply output is decomposed by further combining the CNN for a contradictory relationship between dynamic response and observation noise when photovoltaic capacity changes, and the distributed power supply output sensing method based on the CNN neural network is obtained. The method has high reliability and effectiveness under the conditions of different photovoltaic permeability and measurement noise, and can complete normal photovoltaic sensing and monitoring functions of the transformer area.
本发明提供一种结合CNN神经网络的分布式电源出力感知方法,其在最小互信息的光伏出力分解方法基础之上,针对光伏容量变化时的动态响应与观测噪声之间的矛盾关系,进一步结合CNN(Convolutional Neural Network)神经网络对分布式电源出力进行分解,本方法在不同光伏渗透率且有测量噪声情况下具有较高的可靠性和有效性,能够完成正常的台区光伏感知、监控功能。</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240123&DB=EPODOC&CC=CN&NR=117439076A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240123&DB=EPODOC&CC=CN&NR=117439076A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANGFU WUJUN</creatorcontrib><creatorcontrib>KOU QILONG</creatorcontrib><creatorcontrib>JI ZHONGHAO</creatorcontrib><creatorcontrib>ZHANG JIANGTAO</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>DUAN XIAOCHEN</creatorcontrib><creatorcontrib>ZHOU LEIYUE</creatorcontrib><creatorcontrib>HUANG LEIFENG</creatorcontrib><creatorcontrib>GENG XIN</creatorcontrib><creatorcontrib>SHE YANJIE</creatorcontrib><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>ZHANG MINGKE</creatorcontrib><creatorcontrib>KONG XIANGWEN</creatorcontrib><creatorcontrib>WANG QING</creatorcontrib><creatorcontrib>LIANG SHICHENG</creatorcontrib><title>Distributed power supply output sensing method combined with CNN neural network</title><description>The invention provides a distributed power supply output sensing method combined with a CNN (Convolutional Neural Network) neural network, which is characterized in that on the basis of a photovoltaic output decomposition method of minimum mutual information, distributed power supply output is decomposed by further combining the CNN for a contradictory relationship between dynamic response and observation noise when photovoltaic capacity changes, and the distributed power supply output sensing method based on the CNN neural network is obtained. The method has high reliability and effectiveness under the conditions of different photovoltaic permeability and measurement noise, and can complete normal photovoltaic sensing and monitoring functions of the transformer area.
本发明提供一种结合CNN神经网络的分布式电源出力感知方法,其在最小互信息的光伏出力分解方法基础之上,针对光伏容量变化时的动态响应与观测噪声之间的矛盾关系,进一步结合CNN(Convolutional Neural Network)神经网络对分布式电源出力进行分解,本方法在不同光伏渗透率且有测量噪声情况下具有较高的可靠性和有效性,能够完成正常的台区光伏感知、监控功能。</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUANAsDqLe4XsAwVKxOEpUnOLiXtL21wbTJOT_ELy9GTyA01veUjwuhjiaLjEOEHzGCJRCsB_wiUNiIHRk3Atm5MkP0Pu5M67cbHgCqRQ4TFHbAmcf32uxGLUl3Pxcie3t-pT3HQbfIgXdY5mtVFXVHOrTvjme63_OF6mPN3U</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>HUANGFU WUJUN</creator><creator>KOU QILONG</creator><creator>JI ZHONGHAO</creator><creator>ZHANG JIANGTAO</creator><creator>PENG GANG</creator><creator>DUAN XIAOCHEN</creator><creator>ZHOU LEIYUE</creator><creator>HUANG LEIFENG</creator><creator>GENG XIN</creator><creator>SHE YANJIE</creator><creator>LIU YI</creator><creator>ZHANG MINGKE</creator><creator>KONG XIANGWEN</creator><creator>WANG QING</creator><creator>LIANG SHICHENG</creator><scope>EVB</scope></search><sort><creationdate>20240123</creationdate><title>Distributed power supply output sensing method combined with CNN neural network</title><author>HUANGFU WUJUN ; KOU QILONG ; JI ZHONGHAO ; ZHANG JIANGTAO ; PENG GANG ; DUAN XIAOCHEN ; ZHOU LEIYUE ; HUANG LEIFENG ; GENG XIN ; SHE YANJIE ; LIU YI ; ZHANG MINGKE ; KONG XIANGWEN ; WANG QING ; LIANG SHICHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117439076A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANGFU WUJUN</creatorcontrib><creatorcontrib>KOU QILONG</creatorcontrib><creatorcontrib>JI ZHONGHAO</creatorcontrib><creatorcontrib>ZHANG JIANGTAO</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>DUAN XIAOCHEN</creatorcontrib><creatorcontrib>ZHOU LEIYUE</creatorcontrib><creatorcontrib>HUANG LEIFENG</creatorcontrib><creatorcontrib>GENG XIN</creatorcontrib><creatorcontrib>SHE YANJIE</creatorcontrib><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>ZHANG MINGKE</creatorcontrib><creatorcontrib>KONG XIANGWEN</creatorcontrib><creatorcontrib>WANG QING</creatorcontrib><creatorcontrib>LIANG SHICHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANGFU WUJUN</au><au>KOU QILONG</au><au>JI ZHONGHAO</au><au>ZHANG JIANGTAO</au><au>PENG GANG</au><au>DUAN XIAOCHEN</au><au>ZHOU LEIYUE</au><au>HUANG LEIFENG</au><au>GENG XIN</au><au>SHE YANJIE</au><au>LIU YI</au><au>ZHANG MINGKE</au><au>KONG XIANGWEN</au><au>WANG QING</au><au>LIANG SHICHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distributed power supply output sensing method combined with CNN neural network</title><date>2024-01-23</date><risdate>2024</risdate><abstract>The invention provides a distributed power supply output sensing method combined with a CNN (Convolutional Neural Network) neural network, which is characterized in that on the basis of a photovoltaic output decomposition method of minimum mutual information, distributed power supply output is decomposed by further combining the CNN for a contradictory relationship between dynamic response and observation noise when photovoltaic capacity changes, and the distributed power supply output sensing method based on the CNN neural network is obtained. The method has high reliability and effectiveness under the conditions of different photovoltaic permeability and measurement noise, and can complete normal photovoltaic sensing and monitoring functions of the transformer area.
本发明提供一种结合CNN神经网络的分布式电源出力感知方法,其在最小互信息的光伏出力分解方法基础之上,针对光伏容量变化时的动态响应与观测噪声之间的矛盾关系,进一步结合CNN(Convolutional Neural Network)神经网络对分布式电源出力进行分解,本方法在不同光伏渗透率且有测量噪声情况下具有较高的可靠性和有效性,能够完成正常的台区光伏感知、监控功能。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117439076A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY |
title | Distributed power supply output sensing method combined with CNN neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANGFU%20WUJUN&rft.date=2024-01-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117439076A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |