Monocular depth estimation method and system based on adaptive token aggregation

The invention belongs to the technical field of image processing, and provides a monocular depth estimation method and system based on adaptive token aggregation in order to solve the problem that accurate estimation cannot be realized due to the fact that rich global information cannot be accuratel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU DAZHENG, LIU LIXIA, XU YIMING, ZHANG MINGLIANG, LI BIN, YANG SHUHUI, ZHI YUMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU DAZHENG
LIU LIXIA
XU YIMING
ZHANG MINGLIANG
LI BIN
YANG SHUHUI
ZHI YUMIN
description The invention belongs to the technical field of image processing, and provides a monocular depth estimation method and system based on adaptive token aggregation in order to solve the problem that accurate estimation cannot be realized due to the fact that rich global information cannot be accurately extracted and local features cannot be accurately estimated in an existing method. According to the method, respective advantages of a convolutional network and a Transform are fused and applied to a depth estimation task, the Transform is used for extracting global context information, and the convolutional network is used for retaining local context information, so that an algorithm has the capability of extracting complete information in a scene, information of Transform features and information of convolutional network features are interacted, a corresponding relation is enhanced, and the algorithm is more efficient and more efficient. And the characterization capability of the features is enhanced, so that t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117437272A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117437272A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117437272A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QAWSYStJSg2ioV9GLPfzWJ2Z8mOgrc3iAew-jze-_PicpIo3XPgkSyS9oSsPrB6iRSgvVjiaCm_syLQjTMsTYotJ_UvkMoDEzo3wn1fy2J25yFj9dtFsT7sr81xgyQtcuIOEdo257I029pUptrV_zQfxeQ3qQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Monocular depth estimation method and system based on adaptive token aggregation</title><source>esp@cenet</source><creator>ZHOU DAZHENG ; LIU LIXIA ; XU YIMING ; ZHANG MINGLIANG ; LI BIN ; YANG SHUHUI ; ZHI YUMIN</creator><creatorcontrib>ZHOU DAZHENG ; LIU LIXIA ; XU YIMING ; ZHANG MINGLIANG ; LI BIN ; YANG SHUHUI ; ZHI YUMIN</creatorcontrib><description>The invention belongs to the technical field of image processing, and provides a monocular depth estimation method and system based on adaptive token aggregation in order to solve the problem that accurate estimation cannot be realized due to the fact that rich global information cannot be accurately extracted and local features cannot be accurately estimated in an existing method. According to the method, respective advantages of a convolutional network and a Transform are fused and applied to a depth estimation task, the Transform is used for extracting global context information, and the convolutional network is used for retaining local context information, so that an algorithm has the capability of extracting complete information in a scene, information of Transform features and information of convolutional network features are interacted, a corresponding relation is enhanced, and the algorithm is more efficient and more efficient. And the characterization capability of the features is enhanced, so that t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=CN&amp;NR=117437272A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=CN&amp;NR=117437272A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU DAZHENG</creatorcontrib><creatorcontrib>LIU LIXIA</creatorcontrib><creatorcontrib>XU YIMING</creatorcontrib><creatorcontrib>ZHANG MINGLIANG</creatorcontrib><creatorcontrib>LI BIN</creatorcontrib><creatorcontrib>YANG SHUHUI</creatorcontrib><creatorcontrib>ZHI YUMIN</creatorcontrib><title>Monocular depth estimation method and system based on adaptive token aggregation</title><description>The invention belongs to the technical field of image processing, and provides a monocular depth estimation method and system based on adaptive token aggregation in order to solve the problem that accurate estimation cannot be realized due to the fact that rich global information cannot be accurately extracted and local features cannot be accurately estimated in an existing method. According to the method, respective advantages of a convolutional network and a Transform are fused and applied to a depth estimation task, the Transform is used for extracting global context information, and the convolutional network is used for retaining local context information, so that an algorithm has the capability of extracting complete information in a scene, information of Transform features and information of convolutional network features are interacted, a corresponding relation is enhanced, and the algorithm is more efficient and more efficient. And the characterization capability of the features is enhanced, so that t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QAWSYStJSg2ioV9GLPfzWJ2Z8mOgrc3iAew-jze-_PicpIo3XPgkSyS9oSsPrB6iRSgvVjiaCm_syLQjTMsTYotJ_UvkMoDEzo3wn1fy2J25yFj9dtFsT7sr81xgyQtcuIOEdo257I029pUptrV_zQfxeQ3qQ</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>ZHOU DAZHENG</creator><creator>LIU LIXIA</creator><creator>XU YIMING</creator><creator>ZHANG MINGLIANG</creator><creator>LI BIN</creator><creator>YANG SHUHUI</creator><creator>ZHI YUMIN</creator><scope>EVB</scope></search><sort><creationdate>20240123</creationdate><title>Monocular depth estimation method and system based on adaptive token aggregation</title><author>ZHOU DAZHENG ; LIU LIXIA ; XU YIMING ; ZHANG MINGLIANG ; LI BIN ; YANG SHUHUI ; ZHI YUMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117437272A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU DAZHENG</creatorcontrib><creatorcontrib>LIU LIXIA</creatorcontrib><creatorcontrib>XU YIMING</creatorcontrib><creatorcontrib>ZHANG MINGLIANG</creatorcontrib><creatorcontrib>LI BIN</creatorcontrib><creatorcontrib>YANG SHUHUI</creatorcontrib><creatorcontrib>ZHI YUMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU DAZHENG</au><au>LIU LIXIA</au><au>XU YIMING</au><au>ZHANG MINGLIANG</au><au>LI BIN</au><au>YANG SHUHUI</au><au>ZHI YUMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Monocular depth estimation method and system based on adaptive token aggregation</title><date>2024-01-23</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of image processing, and provides a monocular depth estimation method and system based on adaptive token aggregation in order to solve the problem that accurate estimation cannot be realized due to the fact that rich global information cannot be accurately extracted and local features cannot be accurately estimated in an existing method. According to the method, respective advantages of a convolutional network and a Transform are fused and applied to a depth estimation task, the Transform is used for extracting global context information, and the convolutional network is used for retaining local context information, so that an algorithm has the capability of extracting complete information in a scene, information of Transform features and information of convolutional network features are interacted, a corresponding relation is enhanced, and the algorithm is more efficient and more efficient. And the characterization capability of the features is enhanced, so that t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117437272A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Monocular depth estimation method and system based on adaptive token aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20DAZHENG&rft.date=2024-01-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117437272A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true