Grid fault classification method and system based on GA-BP neural network

The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KAZUHIRO, HE XIAOHUA, CUN GUOWU, LI YILIN, ZHOU YAO, WANG HAO, HE XIAOBIN, WACHI TAKASHI, PAN KE, PENG TAO, DENG HUA, LI WEN, HE PENG, YANG JIANZHOU, LIU DANDAN, HE JIANBO, LIANG JIAYU, LIU MINGXIAN, LI GUOHUA, TANG BINGNAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KAZUHIRO
HE XIAOHUA
CUN GUOWU
LI YILIN
ZHOU YAO
WANG HAO
HE XIAOBIN
WACHI TAKASHI
PAN KE
PENG TAO
DENG HUA
LI WEN
HE PENG
YANG JIANZHOU
LIU DANDAN
HE JIANBO
LIANG JIAYU
LIU MINGXIAN
LI GUOHUA
TANG BINGNAN
description The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117407762A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117407762A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117407762A3</originalsourceid><addsrcrecordid>eNrjZPB0L8pMUUhLLM0pUUjOSSwuzkzLTE4syczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBKuTvqOgUo5KWWFiXmAKmS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhuYmBubmbkaEyMGgCPdTPx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Grid fault classification method and system based on GA-BP neural network</title><source>esp@cenet</source><creator>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</creator><creatorcontrib>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</creatorcontrib><description>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240116&amp;DB=EPODOC&amp;CC=CN&amp;NR=117407762A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240116&amp;DB=EPODOC&amp;CC=CN&amp;NR=117407762A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KAZUHIRO</creatorcontrib><creatorcontrib>HE XIAOHUA</creatorcontrib><creatorcontrib>CUN GUOWU</creatorcontrib><creatorcontrib>LI YILIN</creatorcontrib><creatorcontrib>ZHOU YAO</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>HE XIAOBIN</creatorcontrib><creatorcontrib>WACHI TAKASHI</creatorcontrib><creatorcontrib>PAN KE</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DENG HUA</creatorcontrib><creatorcontrib>LI WEN</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>YANG JIANZHOU</creatorcontrib><creatorcontrib>LIU DANDAN</creatorcontrib><creatorcontrib>HE JIANBO</creatorcontrib><creatorcontrib>LIANG JIAYU</creatorcontrib><creatorcontrib>LIU MINGXIAN</creatorcontrib><creatorcontrib>LI GUOHUA</creatorcontrib><creatorcontrib>TANG BINGNAN</creatorcontrib><title>Grid fault classification method and system based on GA-BP neural network</title><description>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB0L8pMUUhLLM0pUUjOSSwuzkzLTE4syczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBKuTvqOgUo5KWWFiXmAKmS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhuYmBubmbkaEyMGgCPdTPx</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>KAZUHIRO</creator><creator>HE XIAOHUA</creator><creator>CUN GUOWU</creator><creator>LI YILIN</creator><creator>ZHOU YAO</creator><creator>WANG HAO</creator><creator>HE XIAOBIN</creator><creator>WACHI TAKASHI</creator><creator>PAN KE</creator><creator>PENG TAO</creator><creator>DENG HUA</creator><creator>LI WEN</creator><creator>HE PENG</creator><creator>YANG JIANZHOU</creator><creator>LIU DANDAN</creator><creator>HE JIANBO</creator><creator>LIANG JIAYU</creator><creator>LIU MINGXIAN</creator><creator>LI GUOHUA</creator><creator>TANG BINGNAN</creator><scope>EVB</scope></search><sort><creationdate>20240116</creationdate><title>Grid fault classification method and system based on GA-BP neural network</title><author>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117407762A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>KAZUHIRO</creatorcontrib><creatorcontrib>HE XIAOHUA</creatorcontrib><creatorcontrib>CUN GUOWU</creatorcontrib><creatorcontrib>LI YILIN</creatorcontrib><creatorcontrib>ZHOU YAO</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>HE XIAOBIN</creatorcontrib><creatorcontrib>WACHI TAKASHI</creatorcontrib><creatorcontrib>PAN KE</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DENG HUA</creatorcontrib><creatorcontrib>LI WEN</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>YANG JIANZHOU</creatorcontrib><creatorcontrib>LIU DANDAN</creatorcontrib><creatorcontrib>HE JIANBO</creatorcontrib><creatorcontrib>LIANG JIAYU</creatorcontrib><creatorcontrib>LIU MINGXIAN</creatorcontrib><creatorcontrib>LI GUOHUA</creatorcontrib><creatorcontrib>TANG BINGNAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KAZUHIRO</au><au>HE XIAOHUA</au><au>CUN GUOWU</au><au>LI YILIN</au><au>ZHOU YAO</au><au>WANG HAO</au><au>HE XIAOBIN</au><au>WACHI TAKASHI</au><au>PAN KE</au><au>PENG TAO</au><au>DENG HUA</au><au>LI WEN</au><au>HE PENG</au><au>YANG JIANZHOU</au><au>LIU DANDAN</au><au>HE JIANBO</au><au>LIANG JIAYU</au><au>LIU MINGXIAN</au><au>LI GUOHUA</au><au>TANG BINGNAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Grid fault classification method and system based on GA-BP neural network</title><date>2024-01-16</date><risdate>2024</risdate><abstract>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117407762A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Grid fault classification method and system based on GA-BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KAZUHIRO&rft.date=2024-01-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117407762A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true