Grid fault classification method and system based on GA-BP neural network
The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KAZUHIRO HE XIAOHUA CUN GUOWU LI YILIN ZHOU YAO WANG HAO HE XIAOBIN WACHI TAKASHI PAN KE PENG TAO DENG HUA LI WEN HE PENG YANG JIANZHOU LIU DANDAN HE JIANBO LIANG JIAYU LIU MINGXIAN LI GUOHUA TANG BINGNAN |
description | The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117407762A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117407762A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117407762A3</originalsourceid><addsrcrecordid>eNrjZPB0L8pMUUhLLM0pUUjOSSwuzkzLTE4syczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBKuTvqOgUo5KWWFiXmAKmS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhuYmBubmbkaEyMGgCPdTPx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Grid fault classification method and system based on GA-BP neural network</title><source>esp@cenet</source><creator>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</creator><creatorcontrib>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</creatorcontrib><description>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240116&DB=EPODOC&CC=CN&NR=117407762A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240116&DB=EPODOC&CC=CN&NR=117407762A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KAZUHIRO</creatorcontrib><creatorcontrib>HE XIAOHUA</creatorcontrib><creatorcontrib>CUN GUOWU</creatorcontrib><creatorcontrib>LI YILIN</creatorcontrib><creatorcontrib>ZHOU YAO</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>HE XIAOBIN</creatorcontrib><creatorcontrib>WACHI TAKASHI</creatorcontrib><creatorcontrib>PAN KE</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DENG HUA</creatorcontrib><creatorcontrib>LI WEN</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>YANG JIANZHOU</creatorcontrib><creatorcontrib>LIU DANDAN</creatorcontrib><creatorcontrib>HE JIANBO</creatorcontrib><creatorcontrib>LIANG JIAYU</creatorcontrib><creatorcontrib>LIU MINGXIAN</creatorcontrib><creatorcontrib>LI GUOHUA</creatorcontrib><creatorcontrib>TANG BINGNAN</creatorcontrib><title>Grid fault classification method and system based on GA-BP neural network</title><description>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB0L8pMUUhLLM0pUUjOSSwuzkzLTE4syczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBKuTvqOgUo5KWWFiXmAKmS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhuYmBubmbkaEyMGgCPdTPx</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>KAZUHIRO</creator><creator>HE XIAOHUA</creator><creator>CUN GUOWU</creator><creator>LI YILIN</creator><creator>ZHOU YAO</creator><creator>WANG HAO</creator><creator>HE XIAOBIN</creator><creator>WACHI TAKASHI</creator><creator>PAN KE</creator><creator>PENG TAO</creator><creator>DENG HUA</creator><creator>LI WEN</creator><creator>HE PENG</creator><creator>YANG JIANZHOU</creator><creator>LIU DANDAN</creator><creator>HE JIANBO</creator><creator>LIANG JIAYU</creator><creator>LIU MINGXIAN</creator><creator>LI GUOHUA</creator><creator>TANG BINGNAN</creator><scope>EVB</scope></search><sort><creationdate>20240116</creationdate><title>Grid fault classification method and system based on GA-BP neural network</title><author>KAZUHIRO ; HE XIAOHUA ; CUN GUOWU ; LI YILIN ; ZHOU YAO ; WANG HAO ; HE XIAOBIN ; WACHI TAKASHI ; PAN KE ; PENG TAO ; DENG HUA ; LI WEN ; HE PENG ; YANG JIANZHOU ; LIU DANDAN ; HE JIANBO ; LIANG JIAYU ; LIU MINGXIAN ; LI GUOHUA ; TANG BINGNAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117407762A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>KAZUHIRO</creatorcontrib><creatorcontrib>HE XIAOHUA</creatorcontrib><creatorcontrib>CUN GUOWU</creatorcontrib><creatorcontrib>LI YILIN</creatorcontrib><creatorcontrib>ZHOU YAO</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>HE XIAOBIN</creatorcontrib><creatorcontrib>WACHI TAKASHI</creatorcontrib><creatorcontrib>PAN KE</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DENG HUA</creatorcontrib><creatorcontrib>LI WEN</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>YANG JIANZHOU</creatorcontrib><creatorcontrib>LIU DANDAN</creatorcontrib><creatorcontrib>HE JIANBO</creatorcontrib><creatorcontrib>LIANG JIAYU</creatorcontrib><creatorcontrib>LIU MINGXIAN</creatorcontrib><creatorcontrib>LI GUOHUA</creatorcontrib><creatorcontrib>TANG BINGNAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KAZUHIRO</au><au>HE XIAOHUA</au><au>CUN GUOWU</au><au>LI YILIN</au><au>ZHOU YAO</au><au>WANG HAO</au><au>HE XIAOBIN</au><au>WACHI TAKASHI</au><au>PAN KE</au><au>PENG TAO</au><au>DENG HUA</au><au>LI WEN</au><au>HE PENG</au><au>YANG JIANZHOU</au><au>LIU DANDAN</au><au>HE JIANBO</au><au>LIANG JIAYU</au><au>LIU MINGXIAN</au><au>LI GUOHUA</au><au>TANG BINGNAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Grid fault classification method and system based on GA-BP neural network</title><date>2024-01-16</date><risdate>2024</risdate><abstract>The invention relates to the technical field of fault classification, in particular to a grid fault classification method based on a GA-BP neural network, and discloses a grid fault classification method and system based on the GA-BP neural network, and the fault classification method comprises the steps: data collection and preprocessing; a GA-BP neural network model is constructed; performing model training on the neural network model; fault classification and model optimization; according to the method, the optimization capability of the genetic algorithm is utilized, so that the accuracy of a fault classification task is effectively improved, and accurate classification of power grid faults is ensured; the hyper-parameter of the neural network can be adjusted by using the genetic algorithm, so that the hyper-parameter can be converged to the optimal solution more quickly, and the training time is saved; the optimal neural network architecture and parameter combination can be adaptively searched by using t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117407762A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Grid fault classification method and system based on GA-BP neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KAZUHIRO&rft.date=2024-01-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117407762A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |