Financial unbalanced data classification method based on deep learning

The invention relates to a financial unbalanced data classification method based on deep learning, and belongs to the technical field of data mining. The input layer takes financial digital data and text data as input of a classification model; the preprocessing layer preprocesses the data of the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN YAN, ZHOU LANJIANG, CAO CE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN YAN
ZHOU LANJIANG
CAO CE
description The invention relates to a financial unbalanced data classification method based on deep learning, and belongs to the technical field of data mining. The input layer takes financial digital data and text data as input of a classification model; the preprocessing layer preprocesses the data of the input layer; the text feature extraction layer performs word embedding on text data output by the preprocessing layer by using a BERT pre-training model, extracts sequence features of a long text by using a BiGRU bidirectional structure, and extracts local features and important global information of the text by using a convolutional neural network fused with a multi-head self-attention mechanism; the global feature interaction layer is used for splicing the digital data output by the preprocessing layer and the output of the text feature extraction layer, and mining associated features between input features and classification results by using a residual cross network; and the decision-making layer carries out batch
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117407526A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117407526A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117407526A3</originalsourceid><addsrcrecordid>eNqNijsOwjAQBd1QoMAdlgNEIvxSowiLioo-erE3sJJZW9jcHxccgGpmpFkaa0WhThDooxNCdfbkUUAuIGeZxaFIVHpxeUZPE3IdanvmRIHxVtHHyixmhMzrHxuzsZf7cG05xZFzgmPlMg63rusP2_64O533_zxfIxkzcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Financial unbalanced data classification method based on deep learning</title><source>esp@cenet</source><creator>CHEN YAN ; ZHOU LANJIANG ; CAO CE</creator><creatorcontrib>CHEN YAN ; ZHOU LANJIANG ; CAO CE</creatorcontrib><description>The invention relates to a financial unbalanced data classification method based on deep learning, and belongs to the technical field of data mining. The input layer takes financial digital data and text data as input of a classification model; the preprocessing layer preprocesses the data of the input layer; the text feature extraction layer performs word embedding on text data output by the preprocessing layer by using a BERT pre-training model, extracts sequence features of a long text by using a BiGRU bidirectional structure, and extracts local features and important global information of the text by using a convolutional neural network fused with a multi-head self-attention mechanism; the global feature interaction layer is used for splicing the digital data output by the preprocessing layer and the output of the text feature extraction layer, and mining associated features between input features and classification results by using a residual cross network; and the decision-making layer carries out batch</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240116&amp;DB=EPODOC&amp;CC=CN&amp;NR=117407526A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240116&amp;DB=EPODOC&amp;CC=CN&amp;NR=117407526A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHOU LANJIANG</creatorcontrib><creatorcontrib>CAO CE</creatorcontrib><title>Financial unbalanced data classification method based on deep learning</title><description>The invention relates to a financial unbalanced data classification method based on deep learning, and belongs to the technical field of data mining. The input layer takes financial digital data and text data as input of a classification model; the preprocessing layer preprocesses the data of the input layer; the text feature extraction layer performs word embedding on text data output by the preprocessing layer by using a BERT pre-training model, extracts sequence features of a long text by using a BiGRU bidirectional structure, and extracts local features and important global information of the text by using a convolutional neural network fused with a multi-head self-attention mechanism; the global feature interaction layer is used for splicing the digital data output by the preprocessing layer and the output of the text feature extraction layer, and mining associated features between input features and classification results by using a residual cross network; and the decision-making layer carries out batch</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwjAQBd1QoMAdlgNEIvxSowiLioo-erE3sJJZW9jcHxccgGpmpFkaa0WhThDooxNCdfbkUUAuIGeZxaFIVHpxeUZPE3IdanvmRIHxVtHHyixmhMzrHxuzsZf7cG05xZFzgmPlMg63rusP2_64O533_zxfIxkzcg</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>CHEN YAN</creator><creator>ZHOU LANJIANG</creator><creator>CAO CE</creator><scope>EVB</scope></search><sort><creationdate>20240116</creationdate><title>Financial unbalanced data classification method based on deep learning</title><author>CHEN YAN ; ZHOU LANJIANG ; CAO CE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117407526A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHOU LANJIANG</creatorcontrib><creatorcontrib>CAO CE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YAN</au><au>ZHOU LANJIANG</au><au>CAO CE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Financial unbalanced data classification method based on deep learning</title><date>2024-01-16</date><risdate>2024</risdate><abstract>The invention relates to a financial unbalanced data classification method based on deep learning, and belongs to the technical field of data mining. The input layer takes financial digital data and text data as input of a classification model; the preprocessing layer preprocesses the data of the input layer; the text feature extraction layer performs word embedding on text data output by the preprocessing layer by using a BERT pre-training model, extracts sequence features of a long text by using a BiGRU bidirectional structure, and extracts local features and important global information of the text by using a convolutional neural network fused with a multi-head self-attention mechanism; the global feature interaction layer is used for splicing the digital data output by the preprocessing layer and the output of the text feature extraction layer, and mining associated features between input features and classification results by using a residual cross network; and the decision-making layer carries out batch</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117407526A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Financial unbalanced data classification method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YAN&rft.date=2024-01-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117407526A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true