Lightning arrester body identification and segmentation system and method based on convolutional neural network

The invention discloses a lightning arrester body identification and segmentation system based on a convolutional neural network. A graph preprocessing module of the lightning arrester body identification and segmentation system preprocesses a historical lightning arrester infrared image; the data e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN PENG, YING JIANGUO, SUN LONG, CHENG GUOKAI, WEI ZHEN, WENG DONGLEI, ZHOU QIBO, YU MINGJIANG, PAN WENPENG, ZHANG RONGWEI, XIONG JIAJUN, LI JUSHAN, JIANG JIONG, XIE TAO, SHEN HOUMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN PENG
YING JIANGUO
SUN LONG
CHENG GUOKAI
WEI ZHEN
WENG DONGLEI
ZHOU QIBO
YU MINGJIANG
PAN WENPENG
ZHANG RONGWEI
XIONG JIAJUN
LI JUSHAN
JIANG JIONG
XIE TAO
SHEN HOUMING
description The invention discloses a lightning arrester body identification and segmentation system based on a convolutional neural network. A graph preprocessing module of the lightning arrester body identification and segmentation system preprocesses a historical lightning arrester infrared image; the data expansion module is used for expanding the preprocessed infrared images of the lightning arrester; a lightning arrester labeling module performs pixel-level labeling on the lightning arrester body in the expanded data set sample; the network parameter setting module sets network learning parameters of the convolutional neural network model; the network training module inputs the labeled data set into a convolutional neural network model with network learning parameters for training to obtain a trained convolutional neural network model; the lightning arrester body recognition and segmentation module transmits a lightning arrester infrared image collected in real time to the trained convolutional neural network model
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117372688A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117372688A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117372688A3</originalsourceid><addsrcrecordid>eNqNyjEOgkAQhWEaC6PeYTyABZIIrSEaC2NlT4bdATayM2R30XB7V_QAVi_537dM5GraLrDhFtA58oEc1KInMJo4mMYoDEYYkDV4am2M3-CnaO3cLYVONNToSUO8lPBT-vHDsAem0c0TXuIe62TRYO9p89tVsj2f7uVlR4NU5AdUFGVV3tI0z_L9oSiO2T_mDaXgRCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightning arrester body identification and segmentation system and method based on convolutional neural network</title><source>esp@cenet</source><creator>FAN PENG ; YING JIANGUO ; SUN LONG ; CHENG GUOKAI ; WEI ZHEN ; WENG DONGLEI ; ZHOU QIBO ; YU MINGJIANG ; PAN WENPENG ; ZHANG RONGWEI ; XIONG JIAJUN ; LI JUSHAN ; JIANG JIONG ; XIE TAO ; SHEN HOUMING</creator><creatorcontrib>FAN PENG ; YING JIANGUO ; SUN LONG ; CHENG GUOKAI ; WEI ZHEN ; WENG DONGLEI ; ZHOU QIBO ; YU MINGJIANG ; PAN WENPENG ; ZHANG RONGWEI ; XIONG JIAJUN ; LI JUSHAN ; JIANG JIONG ; XIE TAO ; SHEN HOUMING</creatorcontrib><description>The invention discloses a lightning arrester body identification and segmentation system based on a convolutional neural network. A graph preprocessing module of the lightning arrester body identification and segmentation system preprocesses a historical lightning arrester infrared image; the data expansion module is used for expanding the preprocessed infrared images of the lightning arrester; a lightning arrester labeling module performs pixel-level labeling on the lightning arrester body in the expanded data set sample; the network parameter setting module sets network learning parameters of the convolutional neural network model; the network training module inputs the labeled data set into a convolutional neural network model with network learning parameters for training to obtain a trained convolutional neural network model; the lightning arrester body recognition and segmentation module transmits a lightning arrester infrared image collected in real time to the trained convolutional neural network model</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117372688A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117372688A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN PENG</creatorcontrib><creatorcontrib>YING JIANGUO</creatorcontrib><creatorcontrib>SUN LONG</creatorcontrib><creatorcontrib>CHENG GUOKAI</creatorcontrib><creatorcontrib>WEI ZHEN</creatorcontrib><creatorcontrib>WENG DONGLEI</creatorcontrib><creatorcontrib>ZHOU QIBO</creatorcontrib><creatorcontrib>YU MINGJIANG</creatorcontrib><creatorcontrib>PAN WENPENG</creatorcontrib><creatorcontrib>ZHANG RONGWEI</creatorcontrib><creatorcontrib>XIONG JIAJUN</creatorcontrib><creatorcontrib>LI JUSHAN</creatorcontrib><creatorcontrib>JIANG JIONG</creatorcontrib><creatorcontrib>XIE TAO</creatorcontrib><creatorcontrib>SHEN HOUMING</creatorcontrib><title>Lightning arrester body identification and segmentation system and method based on convolutional neural network</title><description>The invention discloses a lightning arrester body identification and segmentation system based on a convolutional neural network. A graph preprocessing module of the lightning arrester body identification and segmentation system preprocesses a historical lightning arrester infrared image; the data expansion module is used for expanding the preprocessed infrared images of the lightning arrester; a lightning arrester labeling module performs pixel-level labeling on the lightning arrester body in the expanded data set sample; the network parameter setting module sets network learning parameters of the convolutional neural network model; the network training module inputs the labeled data set into a convolutional neural network model with network learning parameters for training to obtain a trained convolutional neural network model; the lightning arrester body recognition and segmentation module transmits a lightning arrester infrared image collected in real time to the trained convolutional neural network model</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOgkAQhWEaC6PeYTyABZIIrSEaC2NlT4bdATayM2R30XB7V_QAVi_537dM5GraLrDhFtA58oEc1KInMJo4mMYoDEYYkDV4am2M3-CnaO3cLYVONNToSUO8lPBT-vHDsAem0c0TXuIe62TRYO9p89tVsj2f7uVlR4NU5AdUFGVV3tI0z_L9oSiO2T_mDaXgRCQ</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>FAN PENG</creator><creator>YING JIANGUO</creator><creator>SUN LONG</creator><creator>CHENG GUOKAI</creator><creator>WEI ZHEN</creator><creator>WENG DONGLEI</creator><creator>ZHOU QIBO</creator><creator>YU MINGJIANG</creator><creator>PAN WENPENG</creator><creator>ZHANG RONGWEI</creator><creator>XIONG JIAJUN</creator><creator>LI JUSHAN</creator><creator>JIANG JIONG</creator><creator>XIE TAO</creator><creator>SHEN HOUMING</creator><scope>EVB</scope></search><sort><creationdate>20240109</creationdate><title>Lightning arrester body identification and segmentation system and method based on convolutional neural network</title><author>FAN PENG ; YING JIANGUO ; SUN LONG ; CHENG GUOKAI ; WEI ZHEN ; WENG DONGLEI ; ZHOU QIBO ; YU MINGJIANG ; PAN WENPENG ; ZHANG RONGWEI ; XIONG JIAJUN ; LI JUSHAN ; JIANG JIONG ; XIE TAO ; SHEN HOUMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117372688A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN PENG</creatorcontrib><creatorcontrib>YING JIANGUO</creatorcontrib><creatorcontrib>SUN LONG</creatorcontrib><creatorcontrib>CHENG GUOKAI</creatorcontrib><creatorcontrib>WEI ZHEN</creatorcontrib><creatorcontrib>WENG DONGLEI</creatorcontrib><creatorcontrib>ZHOU QIBO</creatorcontrib><creatorcontrib>YU MINGJIANG</creatorcontrib><creatorcontrib>PAN WENPENG</creatorcontrib><creatorcontrib>ZHANG RONGWEI</creatorcontrib><creatorcontrib>XIONG JIAJUN</creatorcontrib><creatorcontrib>LI JUSHAN</creatorcontrib><creatorcontrib>JIANG JIONG</creatorcontrib><creatorcontrib>XIE TAO</creatorcontrib><creatorcontrib>SHEN HOUMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN PENG</au><au>YING JIANGUO</au><au>SUN LONG</au><au>CHENG GUOKAI</au><au>WEI ZHEN</au><au>WENG DONGLEI</au><au>ZHOU QIBO</au><au>YU MINGJIANG</au><au>PAN WENPENG</au><au>ZHANG RONGWEI</au><au>XIONG JIAJUN</au><au>LI JUSHAN</au><au>JIANG JIONG</au><au>XIE TAO</au><au>SHEN HOUMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightning arrester body identification and segmentation system and method based on convolutional neural network</title><date>2024-01-09</date><risdate>2024</risdate><abstract>The invention discloses a lightning arrester body identification and segmentation system based on a convolutional neural network. A graph preprocessing module of the lightning arrester body identification and segmentation system preprocesses a historical lightning arrester infrared image; the data expansion module is used for expanding the preprocessed infrared images of the lightning arrester; a lightning arrester labeling module performs pixel-level labeling on the lightning arrester body in the expanded data set sample; the network parameter setting module sets network learning parameters of the convolutional neural network model; the network training module inputs the labeled data set into a convolutional neural network model with network learning parameters for training to obtain a trained convolutional neural network model; the lightning arrester body recognition and segmentation module transmits a lightning arrester infrared image collected in real time to the trained convolutional neural network model</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117372688A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Lightning arrester body identification and segmentation system and method based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20PENG&rft.date=2024-01-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117372688A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true