Satellite task planning scheme evaluation method based on deep learning

The invention discloses a satellite task planning scheme evaluation method based on deep learning, and belongs to the technical field of satellite task planning. The method specifically comprises the steps of satellite task planning scheme historical data acquisition, data preprocessing, sample set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XING YING, ZHU JIN, WANG GANG, CHEN JINYONG, ZHU GUANGXI, CHAI YINGTE, MIAO SHAOBO, ZHANG CHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XING YING
ZHU JIN
WANG GANG
CHEN JINYONG
ZHU GUANGXI
CHAI YINGTE
MIAO SHAOBO
ZHANG CHAO
description The invention discloses a satellite task planning scheme evaluation method based on deep learning, and belongs to the technical field of satellite task planning. The method specifically comprises the steps of satellite task planning scheme historical data acquisition, data preprocessing, sample set construction, evaluation model establishment, model training and verification, planning scheme real-time evaluation and the like. According to the satellite task planning scheme historical data acquisition, executed satellite observation tasks and planning schemes are integrated; the data preprocessing step is used for realizing normalization processing of the acquired data; in the sample set construction step, an index system is constructed, a combination weight is calculated, a historical planning scheme score is obtained, then a data set containing evaluation index data and the scheme score is formed, and a training set and a test set are divided. Compared with a traditional satellite task planning scheme evalua
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117370766A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117370766A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117370766A3</originalsourceid><addsrcrecordid>eNqNyk0KwjAQhuFsXIh6h_EAgqXQrKX4s3Kj-zI2nzY4nQQzen4VPICrlxeeqduf2CASDWRc7pSFVaPeqPQDRhBeLE-2mJRG2JACXbgg0OcDkEnAj6-fu8mVpWDx68wtd9tze1ghpw4lcw-Fde2xqnzt175pNvU_5g13LTQD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Satellite task planning scheme evaluation method based on deep learning</title><source>esp@cenet</source><creator>XING YING ; ZHU JIN ; WANG GANG ; CHEN JINYONG ; ZHU GUANGXI ; CHAI YINGTE ; MIAO SHAOBO ; ZHANG CHAO</creator><creatorcontrib>XING YING ; ZHU JIN ; WANG GANG ; CHEN JINYONG ; ZHU GUANGXI ; CHAI YINGTE ; MIAO SHAOBO ; ZHANG CHAO</creatorcontrib><description>The invention discloses a satellite task planning scheme evaluation method based on deep learning, and belongs to the technical field of satellite task planning. The method specifically comprises the steps of satellite task planning scheme historical data acquisition, data preprocessing, sample set construction, evaluation model establishment, model training and verification, planning scheme real-time evaluation and the like. According to the satellite task planning scheme historical data acquisition, executed satellite observation tasks and planning schemes are integrated; the data preprocessing step is used for realizing normalization processing of the acquired data; in the sample set construction step, an index system is constructed, a combination weight is calculated, a historical planning scheme score is obtained, then a data set containing evaluation index data and the scheme score is formed, and a training set and a test set are divided. Compared with a traditional satellite task planning scheme evalua</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117370766A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117370766A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XING YING</creatorcontrib><creatorcontrib>ZHU JIN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CHEN JINYONG</creatorcontrib><creatorcontrib>ZHU GUANGXI</creatorcontrib><creatorcontrib>CHAI YINGTE</creatorcontrib><creatorcontrib>MIAO SHAOBO</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><title>Satellite task planning scheme evaluation method based on deep learning</title><description>The invention discloses a satellite task planning scheme evaluation method based on deep learning, and belongs to the technical field of satellite task planning. The method specifically comprises the steps of satellite task planning scheme historical data acquisition, data preprocessing, sample set construction, evaluation model establishment, model training and verification, planning scheme real-time evaluation and the like. According to the satellite task planning scheme historical data acquisition, executed satellite observation tasks and planning schemes are integrated; the data preprocessing step is used for realizing normalization processing of the acquired data; in the sample set construction step, an index system is constructed, a combination weight is calculated, a historical planning scheme score is obtained, then a data set containing evaluation index data and the scheme score is formed, and a training set and a test set are divided. Compared with a traditional satellite task planning scheme evalua</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyk0KwjAQhuFsXIh6h_EAgqXQrKX4s3Kj-zI2nzY4nQQzen4VPICrlxeeqduf2CASDWRc7pSFVaPeqPQDRhBeLE-2mJRG2JACXbgg0OcDkEnAj6-fu8mVpWDx68wtd9tze1ghpw4lcw-Fde2xqnzt175pNvU_5g13LTQD</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>XING YING</creator><creator>ZHU JIN</creator><creator>WANG GANG</creator><creator>CHEN JINYONG</creator><creator>ZHU GUANGXI</creator><creator>CHAI YINGTE</creator><creator>MIAO SHAOBO</creator><creator>ZHANG CHAO</creator><scope>EVB</scope></search><sort><creationdate>20240109</creationdate><title>Satellite task planning scheme evaluation method based on deep learning</title><author>XING YING ; ZHU JIN ; WANG GANG ; CHEN JINYONG ; ZHU GUANGXI ; CHAI YINGTE ; MIAO SHAOBO ; ZHANG CHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117370766A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XING YING</creatorcontrib><creatorcontrib>ZHU JIN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CHEN JINYONG</creatorcontrib><creatorcontrib>ZHU GUANGXI</creatorcontrib><creatorcontrib>CHAI YINGTE</creatorcontrib><creatorcontrib>MIAO SHAOBO</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XING YING</au><au>ZHU JIN</au><au>WANG GANG</au><au>CHEN JINYONG</au><au>ZHU GUANGXI</au><au>CHAI YINGTE</au><au>MIAO SHAOBO</au><au>ZHANG CHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Satellite task planning scheme evaluation method based on deep learning</title><date>2024-01-09</date><risdate>2024</risdate><abstract>The invention discloses a satellite task planning scheme evaluation method based on deep learning, and belongs to the technical field of satellite task planning. The method specifically comprises the steps of satellite task planning scheme historical data acquisition, data preprocessing, sample set construction, evaluation model establishment, model training and verification, planning scheme real-time evaluation and the like. According to the satellite task planning scheme historical data acquisition, executed satellite observation tasks and planning schemes are integrated; the data preprocessing step is used for realizing normalization processing of the acquired data; in the sample set construction step, an index system is constructed, a combination weight is calculated, a historical planning scheme score is obtained, then a data set containing evaluation index data and the scheme score is formed, and a training set and a test set are divided. Compared with a traditional satellite task planning scheme evalua</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117370766A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Satellite task planning scheme evaluation method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XING%20YING&rft.date=2024-01-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117370766A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true