Cloud computing data recommendation method based on service combination hypergraph convolutional network

The invention discloses a cloud computing data recommendation method based on a service combination hypergraph convolutional network, and the method comprises the steps: mining a potential service combination relationship in cloud computing data, and constructing a sequence combination set; a servic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU JIAWEI, WANG CECE, LI DUANNI, XU JUN, CAI WANCHUANG, XIAO GANG, WANG QIBING, CHENG ZHENBO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU JIAWEI
WANG CECE
LI DUANNI
XU JUN
CAI WANCHUANG
XIAO GANG
WANG QIBING
CHENG ZHENBO
description The invention discloses a cloud computing data recommendation method based on a service combination hypergraph convolutional network, and the method comprises the steps: mining a potential service combination relationship in cloud computing data, and constructing a sequence combination set; a service combination hypergraph is constructed based on the sequence combination set, and effective modeling of combination features of the API service is achieved; according to the idea of Chebyshev approximate convolution, designing a hypergraph convolution network to extract hypergraph signals on the service combination hypergraph; then, carrying out dimension reduction processing on the hypergraph signal by using an Hg-Pool pooling method; performing semantic coding on the API service by utilizing a pre-training language model to obtain a semantic embedding vector, and fusing the semantic embedding vector and the hypergraph signal to obtain a combined embedding vector; and finally, calculating the recommendation proba
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117370650A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117370650A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117370650A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbtxIeodxgMILUW7lqK4cuW-TJOxCU0yIUkr3t4UPYCrz3u8vy5Ua3iSINj6KWk3gMSEECgLSy6DZgeWkmIJPUaSkDlSmLWg5dVr923U21MYAnqVtZvZTItGA47Si8O4LVZPNJF2v90U--vl0d4O5Lmj6FFQLrv2XlVN3ZSnY3mu_2k-muNBmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cloud computing data recommendation method based on service combination hypergraph convolutional network</title><source>esp@cenet</source><creator>LU JIAWEI ; WANG CECE ; LI DUANNI ; XU JUN ; CAI WANCHUANG ; XIAO GANG ; WANG QIBING ; CHENG ZHENBO</creator><creatorcontrib>LU JIAWEI ; WANG CECE ; LI DUANNI ; XU JUN ; CAI WANCHUANG ; XIAO GANG ; WANG QIBING ; CHENG ZHENBO</creatorcontrib><description>The invention discloses a cloud computing data recommendation method based on a service combination hypergraph convolutional network, and the method comprises the steps: mining a potential service combination relationship in cloud computing data, and constructing a sequence combination set; a service combination hypergraph is constructed based on the sequence combination set, and effective modeling of combination features of the API service is achieved; according to the idea of Chebyshev approximate convolution, designing a hypergraph convolution network to extract hypergraph signals on the service combination hypergraph; then, carrying out dimension reduction processing on the hypergraph signal by using an Hg-Pool pooling method; performing semantic coding on the API service by utilizing a pre-training language model to obtain a semantic embedding vector, and fusing the semantic embedding vector and the hypergraph signal to obtain a combined embedding vector; and finally, calculating the recommendation proba</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117370650A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=CN&amp;NR=117370650A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU JIAWEI</creatorcontrib><creatorcontrib>WANG CECE</creatorcontrib><creatorcontrib>LI DUANNI</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>CAI WANCHUANG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>WANG QIBING</creatorcontrib><creatorcontrib>CHENG ZHENBO</creatorcontrib><title>Cloud computing data recommendation method based on service combination hypergraph convolutional network</title><description>The invention discloses a cloud computing data recommendation method based on a service combination hypergraph convolutional network, and the method comprises the steps: mining a potential service combination relationship in cloud computing data, and constructing a sequence combination set; a service combination hypergraph is constructed based on the sequence combination set, and effective modeling of combination features of the API service is achieved; according to the idea of Chebyshev approximate convolution, designing a hypergraph convolution network to extract hypergraph signals on the service combination hypergraph; then, carrying out dimension reduction processing on the hypergraph signal by using an Hg-Pool pooling method; performing semantic coding on the API service by utilizing a pre-training language model to obtain a semantic embedding vector, and fusing the semantic embedding vector and the hypergraph signal to obtain a combined embedding vector; and finally, calculating the recommendation proba</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbtxIeodxgMILUW7lqK4cuW-TJOxCU0yIUkr3t4UPYCrz3u8vy5Ua3iSINj6KWk3gMSEECgLSy6DZgeWkmIJPUaSkDlSmLWg5dVr923U21MYAnqVtZvZTItGA47Si8O4LVZPNJF2v90U--vl0d4O5Lmj6FFQLrv2XlVN3ZSnY3mu_2k-muNBmQ</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>LU JIAWEI</creator><creator>WANG CECE</creator><creator>LI DUANNI</creator><creator>XU JUN</creator><creator>CAI WANCHUANG</creator><creator>XIAO GANG</creator><creator>WANG QIBING</creator><creator>CHENG ZHENBO</creator><scope>EVB</scope></search><sort><creationdate>20240109</creationdate><title>Cloud computing data recommendation method based on service combination hypergraph convolutional network</title><author>LU JIAWEI ; WANG CECE ; LI DUANNI ; XU JUN ; CAI WANCHUANG ; XIAO GANG ; WANG QIBING ; CHENG ZHENBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117370650A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU JIAWEI</creatorcontrib><creatorcontrib>WANG CECE</creatorcontrib><creatorcontrib>LI DUANNI</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>CAI WANCHUANG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>WANG QIBING</creatorcontrib><creatorcontrib>CHENG ZHENBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU JIAWEI</au><au>WANG CECE</au><au>LI DUANNI</au><au>XU JUN</au><au>CAI WANCHUANG</au><au>XIAO GANG</au><au>WANG QIBING</au><au>CHENG ZHENBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cloud computing data recommendation method based on service combination hypergraph convolutional network</title><date>2024-01-09</date><risdate>2024</risdate><abstract>The invention discloses a cloud computing data recommendation method based on a service combination hypergraph convolutional network, and the method comprises the steps: mining a potential service combination relationship in cloud computing data, and constructing a sequence combination set; a service combination hypergraph is constructed based on the sequence combination set, and effective modeling of combination features of the API service is achieved; according to the idea of Chebyshev approximate convolution, designing a hypergraph convolution network to extract hypergraph signals on the service combination hypergraph; then, carrying out dimension reduction processing on the hypergraph signal by using an Hg-Pool pooling method; performing semantic coding on the API service by utilizing a pre-training language model to obtain a semantic embedding vector, and fusing the semantic embedding vector and the hypergraph signal to obtain a combined embedding vector; and finally, calculating the recommendation proba</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117370650A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Cloud computing data recommendation method based on service combination hypergraph convolutional network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20JIAWEI&rft.date=2024-01-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117370650A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true