Vehicle-mounted gesture recognition method based on deep learning

The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU XIAOFAN, DING MENGSEN, SUN XIAOKAI, HAO JINGBIN, HUA DEZHENG, ZHOU HAO, WANG QINGQING, LIU XINHUA, LIANG CI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU XIAOFAN
DING MENGSEN
SUN XIAOKAI
HAO JINGBIN
HUA DEZHENG
ZHOU HAO
WANG QINGQING
LIU XINHUA
LIANG CI
description The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117351557A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117351557A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117351557A3</originalsourceid><addsrcrecordid>eNrjZHAMS83ITM5J1c3NL80rSU1RSE8tLiktSlUoSk3OT8_LLMnMz1PITS3JyE9RSEosBioA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmxqaGpqbmjMTFqACWCMeI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle-mounted gesture recognition method based on deep learning</title><source>esp@cenet</source><creator>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</creator><creatorcontrib>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</creatorcontrib><description>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240105&amp;DB=EPODOC&amp;CC=CN&amp;NR=117351557A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240105&amp;DB=EPODOC&amp;CC=CN&amp;NR=117351557A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU XIAOFAN</creatorcontrib><creatorcontrib>DING MENGSEN</creatorcontrib><creatorcontrib>SUN XIAOKAI</creatorcontrib><creatorcontrib>HAO JINGBIN</creatorcontrib><creatorcontrib>HUA DEZHENG</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><creatorcontrib>LIANG CI</creatorcontrib><title>Vehicle-mounted gesture recognition method based on deep learning</title><description>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAMS83ITM5J1c3NL80rSU1RSE8tLiktSlUoSk3OT8_LLMnMz1PITS3JyE9RSEosBioA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmxqaGpqbmjMTFqACWCMeI</recordid><startdate>20240105</startdate><enddate>20240105</enddate><creator>LIU XIAOFAN</creator><creator>DING MENGSEN</creator><creator>SUN XIAOKAI</creator><creator>HAO JINGBIN</creator><creator>HUA DEZHENG</creator><creator>ZHOU HAO</creator><creator>WANG QINGQING</creator><creator>LIU XINHUA</creator><creator>LIANG CI</creator><scope>EVB</scope></search><sort><creationdate>20240105</creationdate><title>Vehicle-mounted gesture recognition method based on deep learning</title><author>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117351557A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU XIAOFAN</creatorcontrib><creatorcontrib>DING MENGSEN</creatorcontrib><creatorcontrib>SUN XIAOKAI</creatorcontrib><creatorcontrib>HAO JINGBIN</creatorcontrib><creatorcontrib>HUA DEZHENG</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><creatorcontrib>LIANG CI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU XIAOFAN</au><au>DING MENGSEN</au><au>SUN XIAOKAI</au><au>HAO JINGBIN</au><au>HUA DEZHENG</au><au>ZHOU HAO</au><au>WANG QINGQING</au><au>LIU XINHUA</au><au>LIANG CI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle-mounted gesture recognition method based on deep learning</title><date>2024-01-05</date><risdate>2024</risdate><abstract>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117351557A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Vehicle-mounted gesture recognition method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20XIAOFAN&rft.date=2024-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117351557A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true