Vehicle-mounted gesture recognition method based on deep learning
The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network)...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU XIAOFAN DING MENGSEN SUN XIAOKAI HAO JINGBIN HUA DEZHENG ZHOU HAO WANG QINGQING LIU XINHUA LIANG CI |
description | The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117351557A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117351557A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117351557A3</originalsourceid><addsrcrecordid>eNrjZHAMS83ITM5J1c3NL80rSU1RSE8tLiktSlUoSk3OT8_LLMnMz1PITS3JyE9RSEosBioA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmxqaGpqbmjMTFqACWCMeI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle-mounted gesture recognition method based on deep learning</title><source>esp@cenet</source><creator>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</creator><creatorcontrib>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</creatorcontrib><description>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240105&DB=EPODOC&CC=CN&NR=117351557A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240105&DB=EPODOC&CC=CN&NR=117351557A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU XIAOFAN</creatorcontrib><creatorcontrib>DING MENGSEN</creatorcontrib><creatorcontrib>SUN XIAOKAI</creatorcontrib><creatorcontrib>HAO JINGBIN</creatorcontrib><creatorcontrib>HUA DEZHENG</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><creatorcontrib>LIANG CI</creatorcontrib><title>Vehicle-mounted gesture recognition method based on deep learning</title><description>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAMS83ITM5J1c3NL80rSU1RSE8tLiktSlUoSk3OT8_LLMnMz1PITS3JyE9RSEosBioA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmxqaGpqbmjMTFqACWCMeI</recordid><startdate>20240105</startdate><enddate>20240105</enddate><creator>LIU XIAOFAN</creator><creator>DING MENGSEN</creator><creator>SUN XIAOKAI</creator><creator>HAO JINGBIN</creator><creator>HUA DEZHENG</creator><creator>ZHOU HAO</creator><creator>WANG QINGQING</creator><creator>LIU XINHUA</creator><creator>LIANG CI</creator><scope>EVB</scope></search><sort><creationdate>20240105</creationdate><title>Vehicle-mounted gesture recognition method based on deep learning</title><author>LIU XIAOFAN ; DING MENGSEN ; SUN XIAOKAI ; HAO JINGBIN ; HUA DEZHENG ; ZHOU HAO ; WANG QINGQING ; LIU XINHUA ; LIANG CI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117351557A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU XIAOFAN</creatorcontrib><creatorcontrib>DING MENGSEN</creatorcontrib><creatorcontrib>SUN XIAOKAI</creatorcontrib><creatorcontrib>HAO JINGBIN</creatorcontrib><creatorcontrib>HUA DEZHENG</creatorcontrib><creatorcontrib>ZHOU HAO</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><creatorcontrib>LIANG CI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU XIAOFAN</au><au>DING MENGSEN</au><au>SUN XIAOKAI</au><au>HAO JINGBIN</au><au>HUA DEZHENG</au><au>ZHOU HAO</au><au>WANG QINGQING</au><au>LIU XINHUA</au><au>LIANG CI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle-mounted gesture recognition method based on deep learning</title><date>2024-01-05</date><risdate>2024</risdate><abstract>The invention discloses a vehicle-mounted gesture recognition method based on deep learning, and the method comprises the steps: tracking a gesture in real time, and obtaining a gesture image of an operator; recognizing the dynamic gesture based on a Faster-RCNN (Region Convolutional Neural Network) algorithm; a gesture instruction of a user is recognized based on a three-dimensional convolutional neural network gesture optimized in combination with an attention mechanism, and the gesture instruction is transmitted to a vehicle-mounted controller to achieve the effect of controlling a vehicle. According to the method, the Faster-RCNN anchor box generation method and the ROI pooling method are used, classification and regression of time intervals of dynamic gesture actions are achieved, positioning detection of the time intervals of the dynamic gestures in an image data sequence is achieved, and compared with traditional extraction gesture recognition, the time and the position of gesture instruction generatio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117351557A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Vehicle-mounted gesture recognition method based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20XIAOFAN&rft.date=2024-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117351557A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |