Spatial-temporal trajectory generation method and device, computer equipment and storage medium
The invention relates to a spatio-temporal trajectory generation method and device, computer equipment and a storage medium. The method comprises the following steps: acquiring real urban trajectory data in a research area, and performing multi-spatial scale division and preprocessing on the urban t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU KANG CAO ZHONGCAI |
description | The invention relates to a spatio-temporal trajectory generation method and device, computer equipment and a storage medium. The method comprises the following steps: acquiring real urban trajectory data in a research area, and performing multi-spatial scale division and preprocessing on the urban trajectory data to generate a travel trajectory sequence; carrying out embedded representation and position coding on the travel track sequence, and extracting spatio-temporal information of the travel track sequence by adopting a Transform model; inputting the spatio-temporal information of the travel trajectory sequence into a generative adversarial network, and generating multi-scale spatio-temporal trajectory data through the generative adversarial network; wherein the multi-scale spatio-temporal trajectory data comprises spatio-temporal trajectory data of a street level and spatio-temporal trajectory data of a community level. According to the method and the device, the individual travel characteristics can be |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117332033A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117332033A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117332033A3</originalsourceid><addsrcrecordid>eNqNjbsKwkAQRdNYiPoPY2_AuIW1BMXKRvsw7F7jhn25mQj-vYv4AVa3OPdw5lV3TSyWXS3wKWZ2JJkHaIn5TT0CcsExkIc8oiEOhgxeVmNDOvo0CTLhOdnkEeSLx6Jyj2IYO_llNbuzG7H67aJan4639lwjxQ5jYl0a0rWXptkrtdsqdVD_fD7jND2G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Spatial-temporal trajectory generation method and device, computer equipment and storage medium</title><source>esp@cenet</source><creator>LIU KANG ; CAO ZHONGCAI</creator><creatorcontrib>LIU KANG ; CAO ZHONGCAI</creatorcontrib><description>The invention relates to a spatio-temporal trajectory generation method and device, computer equipment and a storage medium. The method comprises the following steps: acquiring real urban trajectory data in a research area, and performing multi-spatial scale division and preprocessing on the urban trajectory data to generate a travel trajectory sequence; carrying out embedded representation and position coding on the travel track sequence, and extracting spatio-temporal information of the travel track sequence by adopting a Transform model; inputting the spatio-temporal information of the travel trajectory sequence into a generative adversarial network, and generating multi-scale spatio-temporal trajectory data through the generative adversarial network; wherein the multi-scale spatio-temporal trajectory data comprises spatio-temporal trajectory data of a street level and spatio-temporal trajectory data of a community level. According to the method and the device, the individual travel characteristics can be</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240102&DB=EPODOC&CC=CN&NR=117332033A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240102&DB=EPODOC&CC=CN&NR=117332033A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU KANG</creatorcontrib><creatorcontrib>CAO ZHONGCAI</creatorcontrib><title>Spatial-temporal trajectory generation method and device, computer equipment and storage medium</title><description>The invention relates to a spatio-temporal trajectory generation method and device, computer equipment and a storage medium. The method comprises the following steps: acquiring real urban trajectory data in a research area, and performing multi-spatial scale division and preprocessing on the urban trajectory data to generate a travel trajectory sequence; carrying out embedded representation and position coding on the travel track sequence, and extracting spatio-temporal information of the travel track sequence by adopting a Transform model; inputting the spatio-temporal information of the travel trajectory sequence into a generative adversarial network, and generating multi-scale spatio-temporal trajectory data through the generative adversarial network; wherein the multi-scale spatio-temporal trajectory data comprises spatio-temporal trajectory data of a street level and spatio-temporal trajectory data of a community level. According to the method and the device, the individual travel characteristics can be</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbsKwkAQRdNYiPoPY2_AuIW1BMXKRvsw7F7jhn25mQj-vYv4AVa3OPdw5lV3TSyWXS3wKWZ2JJkHaIn5TT0CcsExkIc8oiEOhgxeVmNDOvo0CTLhOdnkEeSLx6Jyj2IYO_llNbuzG7H67aJan4639lwjxQ5jYl0a0rWXptkrtdsqdVD_fD7jND2G</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>LIU KANG</creator><creator>CAO ZHONGCAI</creator><scope>EVB</scope></search><sort><creationdate>20240102</creationdate><title>Spatial-temporal trajectory generation method and device, computer equipment and storage medium</title><author>LIU KANG ; CAO ZHONGCAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117332033A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU KANG</creatorcontrib><creatorcontrib>CAO ZHONGCAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU KANG</au><au>CAO ZHONGCAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Spatial-temporal trajectory generation method and device, computer equipment and storage medium</title><date>2024-01-02</date><risdate>2024</risdate><abstract>The invention relates to a spatio-temporal trajectory generation method and device, computer equipment and a storage medium. The method comprises the following steps: acquiring real urban trajectory data in a research area, and performing multi-spatial scale division and preprocessing on the urban trajectory data to generate a travel trajectory sequence; carrying out embedded representation and position coding on the travel track sequence, and extracting spatio-temporal information of the travel track sequence by adopting a Transform model; inputting the spatio-temporal information of the travel trajectory sequence into a generative adversarial network, and generating multi-scale spatio-temporal trajectory data through the generative adversarial network; wherein the multi-scale spatio-temporal trajectory data comprises spatio-temporal trajectory data of a street level and spatio-temporal trajectory data of a community level. According to the method and the device, the individual travel characteristics can be</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117332033A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Spatial-temporal trajectory generation method and device, computer equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20KANG&rft.date=2024-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117332033A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |