Lane-level steering information detection method and system based on unsupervised learning

The invention discloses a lane-level steering information detection method and system based on unsupervised learning. Comprising the following steps: a data preprocessing step: carrying out road network topology processing, track data cleaning and map matching to realize connection between track poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG CAILI, JIANG YONGTAO, PAN CHUANJIAO, XIANG LONGGANG, YANG JIA, GAO SONGFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG CAILI
JIANG YONGTAO
PAN CHUANJIAO
XIANG LONGGANG
YANG JIA
GAO SONGFENG
description The invention discloses a lane-level steering information detection method and system based on unsupervised learning. Comprising the following steps: a data preprocessing step: carrying out road network topology processing, track data cleaning and map matching to realize connection between track points and attribution road sections; and an intersection lane information identification step: carrying out clustering analysis on the matching tracks in a certain range of the adjacent end points of the road section intersection based on a Gaussian mixture model, and further carrying out road section intersection lane information detection. And a lane-level steering information mining step: considering different lane steering information, and designing different lane steering information identification rules based on an unsupervised classification method. According to the method, exploratory research is carried out on lane-level steering recognition in the unsupervised classification direction, and a certain technic
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117315972A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117315972A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117315972A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAURLNxIeodvgfoohYpLqUoLsSVKzfl20w1kP6EJC14e6N4AFczw3vMXN3OLCgsJliKCQhGHmSkd2HgZJyQRkL3bQPS02li0RRf2R3ozhGaMholjh5hMp9twUHyzVLNerYRq18u1Pp4uDanAt61iJ47CFLbXMqyrsrtrt7sq3-cN30CO8Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lane-level steering information detection method and system based on unsupervised learning</title><source>esp@cenet</source><creator>ZHANG CAILI ; JIANG YONGTAO ; PAN CHUANJIAO ; XIANG LONGGANG ; YANG JIA ; GAO SONGFENG</creator><creatorcontrib>ZHANG CAILI ; JIANG YONGTAO ; PAN CHUANJIAO ; XIANG LONGGANG ; YANG JIA ; GAO SONGFENG</creatorcontrib><description>The invention discloses a lane-level steering information detection method and system based on unsupervised learning. Comprising the following steps: a data preprocessing step: carrying out road network topology processing, track data cleaning and map matching to realize connection between track points and attribution road sections; and an intersection lane information identification step: carrying out clustering analysis on the matching tracks in a certain range of the adjacent end points of the road section intersection based on a Gaussian mixture model, and further carrying out road section intersection lane information detection. And a lane-level steering information mining step: considering different lane steering information, and designing different lane steering information identification rules based on an unsupervised classification method. According to the method, exploratory research is carried out on lane-level steering recognition in the unsupervised classification direction, and a certain technic</description><language>chi ; eng</language><subject>PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117315972A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117315972A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CAILI</creatorcontrib><creatorcontrib>JIANG YONGTAO</creatorcontrib><creatorcontrib>PAN CHUANJIAO</creatorcontrib><creatorcontrib>XIANG LONGGANG</creatorcontrib><creatorcontrib>YANG JIA</creatorcontrib><creatorcontrib>GAO SONGFENG</creatorcontrib><title>Lane-level steering information detection method and system based on unsupervised learning</title><description>The invention discloses a lane-level steering information detection method and system based on unsupervised learning. Comprising the following steps: a data preprocessing step: carrying out road network topology processing, track data cleaning and map matching to realize connection between track points and attribution road sections; and an intersection lane information identification step: carrying out clustering analysis on the matching tracks in a certain range of the adjacent end points of the road section intersection based on a Gaussian mixture model, and further carrying out road section intersection lane information detection. And a lane-level steering information mining step: considering different lane steering information, and designing different lane steering information identification rules based on an unsupervised classification method. According to the method, exploratory research is carried out on lane-level steering recognition in the unsupervised classification direction, and a certain technic</description><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAURLNxIeodvgfoohYpLqUoLsSVKzfl20w1kP6EJC14e6N4AFczw3vMXN3OLCgsJliKCQhGHmSkd2HgZJyQRkL3bQPS02li0RRf2R3ozhGaMholjh5hMp9twUHyzVLNerYRq18u1Pp4uDanAt61iJ47CFLbXMqyrsrtrt7sq3-cN30CO8Y</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>ZHANG CAILI</creator><creator>JIANG YONGTAO</creator><creator>PAN CHUANJIAO</creator><creator>XIANG LONGGANG</creator><creator>YANG JIA</creator><creator>GAO SONGFENG</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>Lane-level steering information detection method and system based on unsupervised learning</title><author>ZHANG CAILI ; JIANG YONGTAO ; PAN CHUANJIAO ; XIANG LONGGANG ; YANG JIA ; GAO SONGFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117315972A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CAILI</creatorcontrib><creatorcontrib>JIANG YONGTAO</creatorcontrib><creatorcontrib>PAN CHUANJIAO</creatorcontrib><creatorcontrib>XIANG LONGGANG</creatorcontrib><creatorcontrib>YANG JIA</creatorcontrib><creatorcontrib>GAO SONGFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CAILI</au><au>JIANG YONGTAO</au><au>PAN CHUANJIAO</au><au>XIANG LONGGANG</au><au>YANG JIA</au><au>GAO SONGFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lane-level steering information detection method and system based on unsupervised learning</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention discloses a lane-level steering information detection method and system based on unsupervised learning. Comprising the following steps: a data preprocessing step: carrying out road network topology processing, track data cleaning and map matching to realize connection between track points and attribution road sections; and an intersection lane information identification step: carrying out clustering analysis on the matching tracks in a certain range of the adjacent end points of the road section intersection based on a Gaussian mixture model, and further carrying out road section intersection lane information detection. And a lane-level steering information mining step: considering different lane steering information, and designing different lane steering information identification rules based on an unsupervised classification method. According to the method, exploratory research is carried out on lane-level steering recognition in the unsupervised classification direction, and a certain technic</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117315972A
source esp@cenet
subjects PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title Lane-level steering information detection method and system based on unsupervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CAILI&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117315972A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true