Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge
The invention discloses a typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge, and the method comprises the steps: obtaining multi-dimensional remote sensing big data, and carrying out the data processing of the multi-dimensional remote s...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG WEI XIAO RANG DING CAIZHOU YANG ZHIBO CAI LING HUANG YONG ZHANG NAN YU XINHUI |
description | The invention discloses a typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge, and the method comprises the steps: obtaining multi-dimensional remote sensing big data, and carrying out the data processing of the multi-dimensional remote sensing big data, and obtaining an analysis result; performing spatial data mining of element levels according to an analysis result, and extracting typical resource element attribute features; performing interpretation according to the typical resource element attribute features and a preset knowledge-driven model to obtain a typical resource element classification result, and processing the typical resource element classification result into vector pattern spot data; and comparing the vector pattern spot data with preset annual land change survey data to obtain a classification area accuracy index and an interpretation pattern spot accuracy index. The method can effectively extract remote sensing information in a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117315349A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117315349A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117315349A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAPxwMoooAQJYpAVFTpI2MvweDcGfsA5fek4AFUK41mdlo8myF6awIlZHklC0JAD1byrEgxQY16YeqhN3F0l5GHgVzybzBdhjHsRUEZnD13dPEdOaOGDDvqINl68Hj7YPkEuA7zYnI1IWPx21mxPB6a-rRClBY5GguGtvW5LLdVuanWu331j_MFK_VEgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge</title><source>esp@cenet</source><creator>WANG WEI ; XIAO RANG ; DING CAIZHOU ; YANG ZHIBO ; CAI LING ; HUANG YONG ; ZHANG NAN ; YU XINHUI</creator><creatorcontrib>WANG WEI ; XIAO RANG ; DING CAIZHOU ; YANG ZHIBO ; CAI LING ; HUANG YONG ; ZHANG NAN ; YU XINHUI</creatorcontrib><description>The invention discloses a typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge, and the method comprises the steps: obtaining multi-dimensional remote sensing big data, and carrying out the data processing of the multi-dimensional remote sensing big data, and obtaining an analysis result; performing spatial data mining of element levels according to an analysis result, and extracting typical resource element attribute features; performing interpretation according to the typical resource element attribute features and a preset knowledge-driven model to obtain a typical resource element classification result, and processing the typical resource element classification result into vector pattern spot data; and comparing the vector pattern spot data with preset annual land change survey data to obtain a classification area accuracy index and an interpretation pattern spot accuracy index. The method can effectively extract remote sensing information in a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231229&DB=EPODOC&CC=CN&NR=117315349A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231229&DB=EPODOC&CC=CN&NR=117315349A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>XIAO RANG</creatorcontrib><creatorcontrib>DING CAIZHOU</creatorcontrib><creatorcontrib>YANG ZHIBO</creatorcontrib><creatorcontrib>CAI LING</creatorcontrib><creatorcontrib>HUANG YONG</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>YU XINHUI</creatorcontrib><title>Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge</title><description>The invention discloses a typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge, and the method comprises the steps: obtaining multi-dimensional remote sensing big data, and carrying out the data processing of the multi-dimensional remote sensing big data, and obtaining an analysis result; performing spatial data mining of element levels according to an analysis result, and extracting typical resource element attribute features; performing interpretation according to the typical resource element attribute features and a preset knowledge-driven model to obtain a typical resource element classification result, and processing the typical resource element classification result into vector pattern spot data; and comparing the vector pattern spot data with preset annual land change survey data to obtain a classification area accuracy index and an interpretation pattern spot accuracy index. The method can effectively extract remote sensing information in a</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAPxwMoooAQJYpAVFTpI2MvweDcGfsA5fek4AFUK41mdlo8myF6awIlZHklC0JAD1byrEgxQY16YeqhN3F0l5GHgVzybzBdhjHsRUEZnD13dPEdOaOGDDvqINl68Hj7YPkEuA7zYnI1IWPx21mxPB6a-rRClBY5GguGtvW5LLdVuanWu331j_MFK_VEgA</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>WANG WEI</creator><creator>XIAO RANG</creator><creator>DING CAIZHOU</creator><creator>YANG ZHIBO</creator><creator>CAI LING</creator><creator>HUANG YONG</creator><creator>ZHANG NAN</creator><creator>YU XINHUI</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge</title><author>WANG WEI ; XIAO RANG ; DING CAIZHOU ; YANG ZHIBO ; CAI LING ; HUANG YONG ; ZHANG NAN ; YU XINHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117315349A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>XIAO RANG</creatorcontrib><creatorcontrib>DING CAIZHOU</creatorcontrib><creatorcontrib>YANG ZHIBO</creatorcontrib><creatorcontrib>CAI LING</creatorcontrib><creatorcontrib>HUANG YONG</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>YU XINHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEI</au><au>XIAO RANG</au><au>DING CAIZHOU</au><au>YANG ZHIBO</au><au>CAI LING</au><au>HUANG YONG</au><au>ZHANG NAN</au><au>YU XINHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention discloses a typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge, and the method comprises the steps: obtaining multi-dimensional remote sensing big data, and carrying out the data processing of the multi-dimensional remote sensing big data, and obtaining an analysis result; performing spatial data mining of element levels according to an analysis result, and extracting typical resource element attribute features; performing interpretation according to the typical resource element attribute features and a preset knowledge-driven model to obtain a typical resource element classification result, and processing the typical resource element classification result into vector pattern spot data; and comparing the vector pattern spot data with preset annual land change survey data to obtain a classification area accuracy index and an interpretation pattern spot accuracy index. The method can effectively extract remote sensing information in a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117315349A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | Typical resource element interpretation method jointly driven by remote sensing big data and geoscience knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEI&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117315349A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |